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Abstract—Graphical and statistical analyses are presented that allow one to check for an individual
subject whether the performance during a sesston is stable. whether the difference between the left and
the right visual half-field is significant. and whether the performance is uniform over different sessions.
Analyses are given for accuracy data and for latency data. Though the analyses are described for a
visual half-field experiment, they can easily be adapted for other laterality tasks.

INDIVIDUAL ANALYSIS OF LATERALITY DATA

DEesPITE 30 years of intensive laterality research it still is rather difficult to set up a visual half-
field task for determining cerebral dominance. One reason is the lack of reliability data, the
other is the difficulty in finding information about individual data analysis. The reliability
problem will only be mentioned in passing, as it has been dealt with elsewhere [4]. Here, we
will mainly be concerned with the question of finding standards for individual assessment.

A distinction must be made between accuracy and latency data, though both variables
may be assessed in the same experiment. For the individual analysis of accuracy data, we will
mainly work with the lambda index (discussed below), because prior experimentation [4, 6]
has shown that it correlates highly with other possible indices, and its theoretical foundation
is well documented by SPROTT and BRYDEN [2, 18]. For the analysis of latency data, the
point-biserial correlation [12] will be used because of its higher reliability than the mere
difference index [4] and because of its more elegant statistical properties.

Two analyses will be described that can be used for both accuracy and latency data, and
that complement each other very well. The first one is a graphical analysis, the second one, a
statistical analysis. A graphical analysis 1s given because a iot of information that is difficult
to grasp with statistics, can easily be represented in a figure. Some of the statistical methods
have already been introduced in the neuropsychological literature before [2, 12, 18], but will
be repeated here in order to give a full picture. The analyses are described for visual half-field
(VHF) tasks, but can easily be extended to other laterality experiments.

ACCURACY DATA
Graphical analysis
If the stimuli are well randomized and if the subject performs properly, then the number of
stimuli recognized in one VHF should be more or less linearly related to the number of

stimuli presented in that VHF. Thus, the pattern of results in one VHF can ideally be
represented by a straight line with a slope equal to the mean proportion of the correctly
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identified stimuli. Figure 1(A) shows the ideal situation for a left hemisphere dominance
situation; Fig. 1(B) gives the actual performance of a good subject (left hemisphere
dominance, words as stimuli).

Departures from the straight line are caused by fluctuations in attention on the subject’s
side or by grouping of easier and more difficult stimuli. They are not influenced by the
random assignment of stimuli to the left and right VHF.

Three situations, apart from the good one, deserve special attention. First. a departure of
both cumulative functions (VHFs) in the same direction very probably points to increases or
decreases of the subject’s overall attention during the experimental session. Figure 2(A) gives
an example of a subject who showed a decreased attention at the beginning of the session.
Second, a departure of the cumulative function in opposite directions indicates that the
subject directs his attention to one VHF . In Fig. 2(B), this is successively to the left and to the
right VHF. Finally, a departure of one cumulative function without an effect on the other is
most likely to be caused by a clustering of easy or difficult stimuli on one side of the fixation
location.

Unfortunately, neither graphical nor statistical analysis will detect more subtle strategies
adopted by the subject (e.g. always paying attention to the VHF in which the previous
stimulus appeared), unless they are especially looked for by the experimenter (c.g. by
comparing the proportion of correct stimuli presented to the same VHF as the previous
stimulus, with the proportion of correct stimuli presented to the opposite VHF).

Statistical analysis

Once we have noted that the subject displays a stable pattern of performance, two other
questions become important. s there a reliable difference between the left visual field (LVF)
and the right visual field (RVF), and is the difference uniform over successive experimental
sessions?

The lambda index proposed by SPROTT and BRYDEN [ 2, 18] allows a rather simple answer
to these questions. It has been shown that the (natural) logarithm of the number of correct
responses divided by the number of incorrect responses is approximately normally
distributed. the variance being equal to the sum of the reciprocals of the number of correct
and incorrect responses. Thus,

log(n, /n_)~ 4" (logn,/n_), ljn, +1/n_) (N
n, =the number of correct responses,
n_ =the number of incorrect responscs.

Equation (1) forms the basis to check whether the difference between the number of
correct responses in the RVF differs significantly from the number of correct responses in the
LVF. Because the index of Equation (1) is normally distributed for the RVF and the LVF,
the difference between the indices of both VHFs (further called lambda index) will be
normally distributed too, the variance being equal to the sum of the variances of the separate
indices. Thus,

lambda =log(n, /n_. )—log(n, /n_))
~.t'(lambda, I/n, +1/n_ +1/n, +1/n_). (2)

To see whether a lambda 1s significantly different from zero, a simple look at a standard
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normal table suffices. Similarly, confidence intervals can be computed, as has been done in
Fig. 3 for a subject who finished five series of approximately 50 four-letter words in each
VHF, and five series of approximately S0 five-letter words in each VHF (for more details. see

[41).

4-letter words 5-letter words L4L ISL £(4L+5L)

r \ 4 \ YA ™

lambda index

-1

Fig. 3. Lambda indices and 95% confidence intervals for a VHF study in which five series of four-

letter words and five series of five-letter words were administered (data from one subject). Data for the

separate series, as well as for the sum of the four-letter word series (Z4L). the sum of the five-letter
word series (X5L), and the sum of all series (Z(4L + 5L)).

A remarkable aspect of Fig. 3 is the size of the confidence intervals around the lambdas
based on a single series, a problem we did not appreciate that well before we drew the figure.
1t demonstrates how cautiously individual results must be interpreted if they are not based on
sufficient data (i.e. compare the confidence intervals of the single series with the confidence
interval of their sum, Fig. 3).

Because of the statistical foundation, it is possible to estimate how large the difference
between two lambdas must be to reach significance. The smallest variance a lambda can have
is achieved in a situation in which half of the stimuli in each VHF are recognized. For
instance, if we present 50 stimuli in each VHF, the smallest variance is
1/25+1/25+1/25+1/25=0.16. This means that the difference between two lambdas must
exceed 1.11 to be significant at the 0.05 level. For,

(lambdal —lambda2)/sqrt(var, | + var ,)>1.96
(lambdal —lambda2)/sqrt(0.16 4 0.16)>1.96
(lambdal —lambda2)>1.96 x 0.57. (3)

The difference will always have to be larger than the minimal value, because it is impossible
to have at the same time a difference between two lambdas and a minimal variance for both
lambdas. The size of the confidence region surely has to be taken into account, if correlations
over subjects between lambdas and some other variable are investigated (see e.g. [6]).
Table 1 gives the minimal difference for some numbers of stimuli administered to each VHF
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were based on less than 50 stimuli per VHF, also because the accuracy of the normal
approximation of the lambda index depends on the number of stimuli administered.

The second question we asked at the beginning of the section., was how we can appreciate
the homogeneity of lambdas obtained over different sessions. For instance, we might want to
know whether the 10 lambdas of Figure 3 are homogeneous. SPROTT and BRyYDEN [2, 18]
describe the following procedure: All lambdas can be translated into approximately standard
normal quantities (u;). Therefore, assuming that all r replications are independent
experiments, the u,* are independent chi-square variates with one degree of freedom. so that
Tu? is a chi-square variate with r degrees of freedom. Under H: lambda, =lambda,= . ..
=lambda, =lambda, the quantity Zu7 is a function of the common lambda, an estimate of
which is:

w
o
N

L,, =estimate of the grand lambda,

L,=lambda of the ith replication,
s = variance of lambda of the ith replication.

From the foregoing, it follows that a good statistic to test the homogeneity of lambdas is:
z:l’liz =Z(Li—Lnsr)2//Si2* (5)

which has an approximate chi-square distribution with r— 1 degrees of freedom, one degree
of freedom being lost in estimating L, . Table 2 shows the results of such an analysis for an
experiment [4] in which approx. 50 words were presented to the LVF and RVF. Fourteen
subjects participated, half of whom were right-handed (s1-s7), and half left-handed (s8-s14).
Each subject got five replications of a series of four-letter words (series 1-5) and five
replications of a series of five-letter words (series 6—10). The data of the first subject were used
to create Figure 3.

If the individual L, are significantly different, some multiple test procedure can be used to
find out which lambdas are different from each other. MarascuiLo [14] proposes a chi-
square test. which allows a post hoc test for every possible comparison. A comparison is
significant if:

abs(Zw,L;)/sqri(Twis])>sqrtichi-sq, _, (1 —a)), {6)

in which the w; are the contrast coefficients such that Zw,; =0, and r is the number of lambdas
invoived in the study. For instance, YOUNG and ELLIS' [ 19] claim that five-fetter words yield
larger laterality indices than four-letter words is confirmed for subject 1 in Table 2 (also see
Fig. 3)1if:

abs(Ls, — Ly, )/sqrt(si, +s2,)>sqrt(chi —sq4(0.95)), (7

+IL,+1 )
Lo T go!

Lo =1/5x(L,4+Ly+Ly+L,+Ly)
=(14+08+1.040.0+08)/5

N Q

s
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s2, =1/25x (s? +s3 +55 +55 +535)
=(0.28+0.19+0.18 +0.22+0.20)/25
=0.04
s2,=1/25x (si +53+53+s;+5s3)
=(0.19+0.184+0.20+0.27+0.25)/25
=0.04
chi-sq4(0.95)=16.9.

Table 1. Minimum difference between
two lambda indices needed to be
reliable at 5% for different numbers N
of stimuli presented to each of the two

VHFs.

N Minimum difference
5 3.51
25 1.57
50 1.11
250 0.50
500 0.35
2500 0.16
5000 0.11

Table 2. Lambda indices of five replications of a series of four-letter words (Series 1- 3), and of a series of five-
letter words (Series 6-10). Grand lambda calculated with the use of Equation (4), probability of grand lambda
being equal to zero calculated with Equation (4) and (8). probability of the 10 lambdas being homogeneous
calculated with Equations (4) and (5). Underlined lambdas differ at a 5% level from each other {Equations (4)
and Table 3}.

Series Grand P P
1 2 3 4 5 6 7 8 9 10 Lambda (=0) (homog)
sl 14 08 1.0 00 038 31 18 1.5 1.6 1.8 1.37 0.000 0.007
s2 .1 1.1 1.0 16 1.2 22 1.5 25 29 1.5 1.57 0.000 0.310
s3 31 22 16 22 24 30 28 30 26 28 2.53 0.000 0.555
s4 00 038 24 04 12 1.9 12 1.1 1.1 1.1 1.07 0.000 0.276
s5 08 1.3 1.6 18 1.6 0.5 3121 1.8 1.6 1.49 0.000 0.033
s6 02 1.2 11 05 19 0.5 1.7 1.8 06 06 0.95 0.000 0.028
s7 08 1.2 09 15 16 2.1 24 25 2.5 1.6 1.67 0.000 0.03%
s8 1.5 22 14 16 2.1 14 27 31 3.6 1.9 2.00 0.000 0.030
s9 03 16 1.1 02 06 —-04 02 06 0.6 0.1 0.54 0.000 0.170
s10 1.1 1.2 0.7 1.5 08 2.2 3t 24 20 31 1.65 0.000 0.000
st 01 04 02 —-07 03 -02 =01 05 02 03 0.11 0.424 0.850
s12 -02 14 0.2 10 038 1.t 16 0.7 1.0 08 0.83 0.000 0.168
s13 12 00 -04 1.1 08 22 13 16 1.8 1.4 1.11 0.000 0.003
st4 14 20 08 08 17 20 21 214 2.0 1.6 1.62 0.000 0.281
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The difference between five- and four-letter words divided by their joint SD (i.e. 4.0) lies quite
close to the critical value (i.e. 4.1), so that YOUNG and ELL1S’ [ 19] statement recetves some
support from the data of subject 1 in Table 2.

However, because Marascuilo’s procedure determines the critical value in such a way that
the joint probability of a Type-1 error is smaller than or equal to « for the total set of all
possible contrasts, it will be conservative if we are interested in a limited set of comparisons.
for instance if we only are interested in the set of pairwise comparisons (Marascuilo’s
procedure yields but one significant pairwise comparison in Table 2, that between the two
most extreme lambdas of subject 1). Therefore, if we want to limit the post hoc comparisons
to pairwise contrasts, it is more interesting to use a stepwise method, such as HoLM's |9, see
also 8] sequentially rejective procedure. In this procedure, the P-value of all r x (r—1)/2
pairwise contrasts are tabulated in an ascending order and compared with the critical value
a(k —i+1),in which k is the total number of pairwise contrasts and i is the rank number of the
contrast to be compared. The procedure rejects null hypotheses of no contrast as long as the
P-values of the contrasts are below the critical values. Whenever the P-value exceeds the
critical value, the procedure must be stopped, even if on later occasions the P-value again
falls below the critical value. Table 3 shows how the procedure works for the data of sl in
Table 2 (see also Fig. 3). HoLMm [9] proved that the multiple alpha-level of his procedure does
not exceed x, a property which the more familiar multiple range test procedures of the
Newman-Keuls type do not maintain. Table 3 contains the results of Holm’s procedure for
pairwise comparisons.

Table 3. Review table of the sequentially rejective test for
subject 1 of Table 2.

i L L, u Plu) 2k —i+1)

3.08 0.00 415 0.00005 < 0.00111

1
2 3.08 0.82 333 000086 < 0.00114
3 3.08 0.83 3.09 000200 > 0.00116
—stop testing
4 3.08 0.98 3.03  0.00244 0.00119
5 1.79 0.00 2.64  0.00831 0.00122
45 0.83 ~ 0.82 0.02 098783 0.05000
i =rank number of pairwise comparison. ranged in
ascending order with respect to the p-value.
L,. L, =Ilambdas involved in the pairwise comparison.
u =standard normal value of the difference between L,
and L, (see Equation (2)).
plu) =two-tailed significance probability associated with
u,
x =multiple alpha-level.
k =total number of pairwise comparisons involved in

the analysis (here: (10 x 9)/2=45).

A significant difference from zero of the overall lambda (L,,,) can be tested with the use of
the standard normal distribution, for L, is normally distributed with variance

est

s =1/Z(1/s}). (8)
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independent (18, pp. 450-451]. That is, being correct on one trial must not be affected by the
correctness of the preceding trials. This assumption will better be met if stimulus presentation
is thoroughly randomized and if adequate fixation of the subject to the middle of the visual
field is ensured. A careful researcher, however, might in addition want to check serial
independence post hoc by calculating autocorrelations in the obtained data [10,
pp. 287-290]. The graphical analysis presented above will be of some help too, in order to see
whether there are dependencies in the correctness of the subject’s responses.

LATENCY DATA
Graphical analysis

A similar type of graph as for the accuracy data (Fig. 1) can be drawn to check whether the
subject’s performance fluctuated during the session. A change, however, must be made
because in most experiments only reaction times for correct answers are interesting, and the
number of good responses differs between VHFs. Therefore, the scale of the abscissa for the
LVF and RVF will be different, and the reaction latencies must be divided by the number of
correct responses.* This leads to curves ranging on the ordinate from zero (at the beginning
of the experiment) to the average response latency per VHF (when the reaction time for the
last correct response has been entered). Figure 4 shows such curves for a good subject who
finished an experiment in which 100 words were presented to the LVF and RVF.

LVF

RVF

LATENCY

LVF

RVF

NUMBER OF STIMULI RECOGNIZED

Fig.4. First graphical analysis of latency data. Performance of a good subject for 100 five-letter words
presented to LVF and RVF.

*To get a clearer distinction between the curves of the LVF and RVF, it is better not to take the cumulative
reaction latencies, but the cumulative reaction latencies diminished by a constant, thus Z(latency, — x). where
X <minimal reaction latency.



910 M. BryYSBAERT and G. D'YDEWALLE

Another interesting graph is obtained by plotting the latency on the abscissa and the
cumulative proportion of latencies on the ordinate. The rationale for this approach is that
every difference between the mean reaction time of RVF and LVF must be characterized by a
shift of the complete distribution to be genuine. Differences due to an excess of very low or
very high reaction latencies are always more or less questionable. A good performance
should be marked by two well separated S-shaped curves. The curves will slightly differ in
form because reaction time distributions are known to be positively skewed and to have a
positive correlation between mean and variance [13].

An example of how the graph should look for stimuli preferentially processed in the left
hemisphere, is given in Fig. 5 (Fig. 5(A) gives the ideal situation. Figure 5(B) the actual
performance of a good subject for 100 words presented to the RVF and LVF).

An advantage of the graphical display is that it is rather insensitive to outliers at the lower
or the higher end of the scale. It also gives a more complete picture than mean or median
latencies which, because of the specific distribution of reaction times, sometimes are biased
estimators of the population values [16].

Statistical analysis

Levy [12] holds that the variability in reaction latencies is inherent to hemispheric
specialization and therefore proposes to use the point-biserial correlation coefficient (rpp)asa
better laterality index than the mere difference between the mean latency for the LVF and the
RVF. An empirical VHF study in which two series of 100 words were presented five times [4]
added support to Levy’s position in that test-retest reliability was higher for the Iy index
than for the difference index.* It also pointed to the high correlation between the r,, and the
difference index. Therefore, for the rest of the article we will confine ourselves to the point-
biserial correlation coefficient.

The r, is calculated with the use of Equation 9.

_ RT,—RTy

pb

. X (PLPg)' 2, )

S
RT, =mean reaction time for LVF,
RTg=mean reaction time for RVF,
P, =proportion of stimuli presented in LVF,
P, = proportion of stimuli presented in RVF,

s=SD of all reaction times.

Though the exact distribution of r,, can be determined, Das GupTAa [5] gives a
variance-stabilizing transformation of r,, , that approximately leads to a normal distribution

*The relation between the reliability of the difference score (or the r, coeflicient) and the reliability of the
measures in the VHFs depends on the covariation between the measures of the VHFs ([12]. pp. 467-469). If the
covariation is positive. the reliability of the difference (r,) is lower than the rehiability of the measures; if the
covaniation is negative. the reliability of the difference (r,) is higher: and if the covariation is zero. reliabilities of
laterahity indices and raw measurements are equal.
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and therefore allows the same analyses as described for the lambda index. The
transformation is given by:

f(rp,,)z(;T]B)ﬁxo.leog[(l+C)/(I—C)]. (10)
A=(Pr+ P, K)/(P_+ PgK),
K=s}/st,
s} = variance of RVF,
s} =variance of LVF,
AP TY o
rpx (A4 B)2
(A+Bxri)7

x P, Pp.

The variance of f(r,,) is the reciprocal of the total number of stimuli administered (1/N).

A difficulty with Das Gupta’s transformation is the explicit assumption it makes that the
latencies are normally distributed in the RVF and LVF. As is well known [13] and indicated
above, response times are not characterized by a normal but a positively skewed distribution.
We have done extensive simulations to investigate the effect of the departure using a
lognormal distribution as an approximation, and the general result is that a positively
skewed distribution leads to a small reduction of the power of the test. The extent of the
reduction depends on the size of r ,, (the more it deviates from zero. the greater the reduction),
and the ratio of the number of correct responses in the RVF and the LVF (the reduction is
smallest when the ratio is close to one), but not (much) on the total number of correct
responses provided n > 50.

Three attitudes might be adopted concerning the loss of power. First, a better
transformation might be sought; second, the logarithm of the response latencies can be used
as a dependent variable; and third, the loss may be accepted as such. In this manuscript we
adopt the last attitude. Finding a better transformation would make things rather
complicated [5] and might be well beyond the wit of most laterality researchers (including
the authors’). Taking the logarithm of the response times implies a double transformation to
be made,. so that the final index loses much of its understanding, certainly if we take the
benefits into consideration. The conservatism will be larger for substantial r,’s and/or
differences in accuracy between the two VHFs, both situations in which statistics are not
needed that much to make firm conclusions about the laterality pattern. Table 4 contains the
results of some simulations and gives an idea of the extent of information lost in typical
situations. As can be seen, the drop in power for these less extreme situations is well within
the limits.

Testing the significance of an r , is carried out analogously to the testing of a lambda index.
Becausc_/'(r,,,,) is normally distributed with variance 1/N. a standard normal table can be used
to test for significance and to calculate 95% confidence intervals. Figure 6 shows the results
of the latter analysis for the correct responses of the subject mentioned in Fig. 3.

Again, the size of the confidence regions is noteworthy and urges to present sufficient
stimuli to all subjects. Equation (11) gives Fop A4S 4 function off(rph). needed to determine
confidence intervals.
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Table 4. Comparison of normal and lognormal distributions with respect to the normality assumption
of Das Gupta's transformation of r . u=the expected value of the distribution, 6 =SD. N =the
number of observations taken from the distribution. r,, = the point-biserial correlation that is to be
expected, and P(u)=one-tailed significance probability associated with standardized value u. Data
based on 20.000 r,,s per distribution.

Distributions u o N Y on P(—2.58) P(—196) P(1.96) P(2.58)
7154 +ux1582 715.4 158.2 24 031 0.005 0.024 0034 0.000
622.0+ux129.5 622.0 129.5 38

200+exp(6.2+ux0.3) 7154 158.2 24 0.31 0.004 0.020 0.023 0.005
200 +exp(6.0+ux0.3) 6220 129.5 38

1544 ux1582 7154 158.2 48 N e . ISR N
' ' ' ' 0.31 0.005 0.025 0.032 0.008
622.0+ux129.5 622.0 129.5 76

200+exp(6.2+ux0.3) 7154 158.2 48
200 +exp(6.0+ux0.3) 6220 129.5 76
829.5+ux193.2 829.5 193.2 24
622.0+ux129.5 622.0 129.5 38
200+exp(6.4+ux0.3) 829.5 193.2 24
200 +exp(6.0+ux0.3) 6220 129.5 38
829.5+ux193.2 829.5 1932 31
622.0+ux129.5 622.0 129.5 31
200 +exp(6.4+ux0.3) 829.5 193.2 31

200 +exp(6.0+ux0.3) 622.0 129.5 31
Expected probabilities 0.005 0.025 0.025 0.005

0.31 0.003 0.019 0.020 0.003

0.54 0.003 0.021 0.045 0.013

0.54 0.001 0.009 0.028 0.007

0.54 0.003 0.021 0.034 0.009

0.54 0.003 0.015 0.023 0.005

4-letter words 5-letter words £4L ESL L(4L+5L)

r AY / AY IAYA) M

.70

.60

.50 L [

.40 +

.30 b4 + o

.20

point-biserial correlation

Fig. 6. Point biscrial correlations and 95% confidence intervals for a VHF study in which five series of

four-letter words and five series of five-letter words were administered (data from one subject). Data

for the separate series. as well as for the sum of the four-letter word series (£4L), the sum of the five-
letter word scries (Z5L). and the sum of all serics (Z(4L 4+ 5L)).
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Ax(E—1)?
[Dx(E+ )]P—Bx(E—1)%{’

sgn(f(rp))=+11if(r,,)=0and —1if f(r,) <0,
D= sqrt(4+ B),
E=exp[f(r,,) x D x2].

" ph :sgn(f(rp,,)) X sqn{

Homogeneity of r point-biserial correlations is tested with the statistic of Equation (12),
which has an approximate chi-square distribution with r-1 degrees of freedom (see the
discussion of the lambda index for more information).

Zul =Z[f(r,,)—f(rp, V125t (12)
Siz = 1//Ni s
S(rop, ) =[2f (ry )is? /2]

If Zu? is significant. contrasts can be tested using the same equations as Equation (6) and
Table 3.

The distribution of f(r,,_ ) is approximately normal with variance 1/Z(1/s7). so that a
significant difference from zero of the grand point-biserial correlation is easily testable.
Table 5 gives the result of the analyses for homogeneity and significance of f(r,_ ) for the
data of the experiment leading to Table 2 [4].

Table 5. Point-biserial correlations of five replications of a series of four-letter words (Series 1- 5), and of a
series of five-letter words (Series 6-10). Grand r» calculated with the use of Equations (10). (11). and (12).
probability of grand r , being equal to zero calculated with Equations (8). (10). and (12). probability of the 10
rps being homogeneous calculated with Equations (10) and (12). Underlined r s differ at a 5% level from each
other [Equations (10) and Table 3].

Series Grand P P
| 2 3 4 5 6 7 8 9 10 Fon (=0 (homog)
sl 0.50 031 0.t6 037 040 0.33 0.30 030 0.40 0.50 0.39 0.000 0.736
s2 024 009 007 021 022 0.25 035 042 0.60 0.40 0.31 0.000 0.026
53 044 053 0.37 056 0.19 0.19 059 042 0.54 0.44 0.49 0.000 0.258
54 029 035 031 034 035 020 031 000 023 038 030 0.000 0.589
s5 0.38 033 044 023 0.03 0.16 048 0.62 0.35 0.44 0.39 0.000 0.037
N4 027 025 024 030 007 —0.04 000 046 040 —0.06 0.20 0.001 0.458
§7 015 0.18 036 0.17 025 023 055 054 015 054 032 0.000 0.243
& 027 036 012 036 034 008 038 035 017 055 031 0.000 0.768
59 0.13 007 018 0.16 021 —-0.75 029 022 0.12 0.23 0.17 0.002 0.549
st =003 034 025 012 022 029 035 021 019 032 023 0.000 0.755
s11 —0.11 =001 0.09 -0.11 0.00 0.33 007 023 01t —003 0.05 0.270 0.471
s12 —0.03 002 -001 0.19 0.17 0.14 —0.08 026 005 0.27 0.10 0.028 0.682
813 —0.07 030 029 025 000 0.32 023 049 0.17 0.42 0.25 0.000 0.054
s14 032 017 025 020 0.15 —-0.01 042 033 007 0.19 0.21 0.000 0.778

CONCLUDING REMARKS
The foregoing should provide any reader with the necessary information to make firm
statements about the performance of individual subjects and/or patients. Graphical analyses
allow to see whether the pattern of results is stable (see Fig. 1, 2. and 4). Statistical analyses
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make it possible to assess the reliability of obtained VHF differences, both within and across
experimental sessions, and to calculate confidence regions around the parametric values
obtained (see Fig.3 and 6). Though the calculations involved may look a little bit
complicated to a not mathematically oriented investigator. they are very easy to implement
in a user friendly computer program.*

A warning, however, must be given to conclude. No matter how stable and reliable the
results of a subject may be, reliability alone never suffices to generalize from data to. for
instance, statements about the cerebral organization of a subject. To do so, the resuits must
first be compared to other measures of the concept under investigation. As an example. let’s
see what we can conclude from the data of the experiment displayed in Tables 2 and 5 (also
see [4]). About 50 words were presented to the LVF and the RVF. Because processing of
words is known to be a function of the dominant cerebral hemisphere, the data urge one to
conclude that all subjects, except subject 11, have left hemisphere dominance, and that
subject 11 has a bilateral cerebral organization. However, because words are found to favor
the RVF for more reasons than ieft hemisphere dominance for verbal stimuli [3.7, 11, 17].1t
might be asked whether the lack of a clear RVF advantage for subject 11, and to a lesser
extent for subject 12, could be an indication of right hemisphere dominance. To check this
possibility, we ran two further experiments on the two subjects.t Four replications of an
object naming latency test (ONLT) and two replications of a clock reading latency test
(CRLT) were administered. Prior experimentation had indicated that the ONLT leads to a
RVF advantage in right-handed subjects (mean r,,=0.06, also sec [ 15]), and that the CRLT
leads to a LVF advantage in right-handed subjects (mean r ,, = —0.06, also see [ 1, 15]). The
results of the four replications of ONLT for subject 11 were: 0.06, 0.03, 0.05, and 0.21; those
for the two replications of the CRLT: —0.03, and —0.06. Thus, the overall picture of
subject 11 contradicts the possibility of right hemisphere dominance; it even questions the
possibility of bilaterality suggested by Tables 2 and 5. On the other hand. the results of
subject 12 on the ONLT and the CRLT were respectively ONLT: —0.25, —0.45, 0.00.
—0.22, and CRLT: 0.01. 0.05; which is much stronger evidence for right hemisphere
dominance. The results of the ONLT and the CRLT, therefore, seriously question the
validity of a word VHF recognition task as the sole test of individual human cerebral
asymmetry. We are now investigating the merit of a battery of three tests, consisting of word
recognition, ONLT, and CRLT, in the hope that this will suffice to distinguish satisfactorily
between left and right cerebral dominant subjects.
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