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Abstract-Graphical and statistical analyses are presented that allow one to check for an individual 
subject whether the performance during a session is stable. whether the difference between the left and 
the right visual half-field is significant. and whether the performance is uniform over different sessions. 
Analyses are given for accuracy data and for latency data. Though the analyses are described for a 
visual half-field experiment, they can easily be adapted for other laterality tasks. 

INDIVIDUAL ANALYSIS OF LATERALITY DATA 

DESPITE 30 years of intensive laterality research it still is rather difficult to set up a visual half- 
field task for determining cerebral dominance. One reason is the lack of reliability data, the 
other is the difficulty in finding information about individual data analysis. The reliability 
problem will only be mentioned in passing, as it has been dealt with elsewhere [4]. Here, we 
will mainly be concerned with the question of finding standards for individual assessment. 

A distinction must be made between accuracy and latency data, though both variables 
may be assessed in the same experiment. For the individual analysis of accuracy data, we will 
mainly work with the lambda index (discussed below), because prior experimentation [4,6] 
has shown that it correlates highly with other possible indices, and its theoretical foundation 
is well documented by SPROTT and BRYDEN [ 2, IS]. For the analysis of latency data, the 
point-biserial correlation [12] will be used because of its higher reliability than the mere 
difference index [4] and because of its more elegant statistical properties. 

Two analyses will be described that can be used for both accuracy and latency data, and 
that complement each other very well. The first one is a graphical analysis, the second one. a 
statistical analysis. A graphical analysis is given because a lot of information that is difficult 
to grasp with statistics, can easily be represented in a figure. Some of the statistical methods 
have already been introduced in the neuropsychological literature before [2,12, 181, but will 
be repeated here in order to give a full picture. The analyses are described for visual half-field 
(VHF) tasks, but can easily be extended to other laterality experiments. 

Grnpltical analysis 

ACCURACYDATA 

If the stimuli are well randomized and if the subject performs properly, then the number of 
stimuli recognized in one VHF should be more or less linearly related to the number of 
stimuli presented in that VHF. Thus. the pattern of resu!ts in one VHF can ideally be 
represented by a straight line with a slope equal to the mean proportion of the correctly 
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identified stimuli. Figure l(A) shows the ideal situation for a left hemisphere dominance 
situation; Fig. l(B) gives the actual performance of a good subject (left hemisphere 
dominance, words as stimuli). 

Departures from the straight line are caused by fluctuations in attention on the subject’s 
side or by grouping of easier and more difficult stimuli. They are not influenced by the 
random assignment of stimuli to the left and right VHF. 

Three situations. apart from the good one, deserve special attention. First. a departure of 
both cumulative functions (VHFs) in the same direction very probably points to increases or 
decreases of the subject’s overall attention during the experimental session. Figure 2(A) gives 
an example of a subject who showed a decreased attention at the beginning of the session. 
Second, a departure of the cumulative function in opposite directions indicates that the 
subject directs his attention to one VHF. In Fig. 2(B), this is successively to the left and to the 
right VHF. Finally, a departure of one cumulative function without an effect on the other is 
most likely to be caused by a clustering of easy or difficult stimuli on one side of the fixation 
location. 

Unfortunately, neither graphical nor statistical analysis will detect more subtle strategies 
adopted by the subject (e.g. always paying attention to the VHF in which the previous 
stimulus appeared), unless they are especially looked for by the experimenter (e.g. by 
comparing the proportion of correct stimuli presented to the same VHF as the previous 
stimulus, with the proportion of correct stimuli presented to the opposite VHF). 

Statistical analysis 

Once we have noted that the subject displays a stable pattern of performance. two other 
questions become important. Is there a reliable difference between the left visual field (LVF) 
and the right visual field (RVF), and is the difference uniform over successive experimental 
sessions? 

The lambda index proposed by SPROTT and BRYDEN [2, 181 allows a rather simple answer 
to these questions. It has been shown that the (natural) logarithm of the number of correct 
responses divided by the number of incorrect responses is approximately normally 
distributed, the variance being equal to the sum of the reciprocals of the number of correct 
and incorrect responses. Thus, 

log(n+i’n_)-. 1‘(10g(r1+/n_). l,‘f7+ + l/K) (1) 

n + = the number of correct responses, 

II _ = the number of incorrect responses. 

Equation (1) forms the basis to check whether the difference between the number of 
correct responses in the RVF differs significantly from the number of correct rcsponscs in the 
LVF. Because the index of Equation (1) is normally distributed for the RVF and the LVF, 
the difference between the indices of both VHFs (further called lambda index) will be 
normally distributed too, the variance being equal to the sum of the variances of the separate 
indices. Thus. 

lambda = log(n + Jn _ .) - log(n + , /n ~, ) 

-. 1 ‘(lambda, I/u+~+ l/nmH+ I/r?+, + I/n_,). (21 

To see whether a lambda is significantly different from zero, a simple look at a standard 
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normal table suffices. Similarly. confidence intervals can be computed, as has been done in 
Fig. 3 for a subject who finished five series of approximately 50 four-letter words in each 
VHF, and five series of approximately 50 five-letter words in each VHF (for more details. see 

C41). 
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Fig. 3. Lambda indices and 95% confidence intervals for a VHF study in which five series of four- 
letter words and five series of five-letter words were administered (data from one subject). Data for the 
separate series, as well as for the sum of the four-letter word series (24L). the sum of the five-letter 

word series (Z5L). and the sum of all series (Z(4L + SL)). 

A remarkable aspect of Fig. 3 is the size of the confidence intervals around the lambdas 
based on a single series, a problem we did not appreciate that well before we drew the figure. 
It demonstrates how cautiously individual results must be interpreted if they are not based on 
sufficient data (i.e. compare the confidence intervals of the single series with the confidence 
interval of their sum, Fig. 3). 

Because of the statistical foundation. it is possible to estimate how large the difference 
between two lambdas must be to reach significance. The smallest variance a lambda can have 
is achieved in a situation in which half of the stimuli in each VHF are recognized. For 
instance, if we present 50 stimuli in each VHF, the smallest variance is 
l/2.5 + l/25 + l/25 + l/25 =0.16. This means that the difference between two lambdas must 
exceed I .I 1 to be significant at the 0.05 level. For. 

(lambda1 -lambda )/sqrt(var,, + var,,) > 1.96 

(lambda1 -lambda2)/sqrt(O.l6+0.16)> I .96 

(lambda I - lambda2) > 1.96 x 0.57. (3) 

The difference will always have to be larger than the minimal value, because it is impossible 
to have at the same time a difference between two lambdas and a minimal variance for both 
lambdas. The size of the confidence region surely has to be taken into account, ifcorrelations 
over subjects between lambdas and some other variable are investigated (see e.g. [6]). 
Table I gives the minimal difference for some numbers of stimuli administered to each VHF 
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to reach the 5% significance level. Personally. we would feel very uncertain if lambda indices 
were based on less than 50 stimuli per VHF, also because the accuracy of the normal 
approximation of the lambda index depends on the number of stimuli administered. 

The second question we asked at the beginning of the section. was how we can appreciate 
the homogeneity of lambdas obtained over different sessions. For instance. we might want to 
know whether the IO lambdas of Figure 3 are homogeneous. SPROTT and BRYDEN [3. IS] 

describe the following procedure: All lambdas can be translated into approximately standard 
normal quantities (ui). Therefore, assuming that all I’ replications are independent 
experiments, the u,’ are independent chi-square variates with one degree of freedom. so that 
1:~~ is a chi-square variate with r degrees of freedom. Under H: lambda, =lambda, = 
= lambda,= lambda, the quantity Xuf is a function of the common lambda. an estimate of 
which is: 

L,,, = (ZLJs~)/(~ljs~). (4) 

L,,, = estimate of the grand lambda, 

L; = lambda of the ith replication, 

s,? = variance of lambda of the ith replication. 

From the foregoing, it follows that a good statistic to test the homogeneity of lambdas is: 

x.u; = C(L, - LeJ2~S~, (5) 

which has an approximate chi-square distribution with r- 1 degrees of freedom. one degree 
of freedom being lost in estimating L,,,. Table 2 shows the results of such an analysis for an 
experiment [4] in which approx. 50 words were presented to the LVF and RVF. Fourteen 
subjects participated, half of whom were right-handed (sl-~7). and half left-handed (~8~~14). 
Each subject got five replications of a series of four-letter words (series l-5) and five 
replications of a series of five-letter words (series 6-10). The data of the first subject were used 

to create Figure 3. 
If the individual Li are significantly different, some multiple test procedure can be used to 

find out which lambdas are different from each other. MARASCUILO 1141 proposes a chi- 
square test. which allows a post hoc test for every possible comparison. A comparison is 
significant if: 

abs(C\z~jLi)jsqrt(X\\~~.s/)>sqrt(chi-sq,_ ,( I -4). (6) 

in which the \t’; are the contrast coefficients such that CW;= 0, and r is the number of lambdas 
involved in the study. For instance, YOUNG and Et_LIS’ [19] claim that five-letter words yield 
larger laterality indices than four-letter words is confirmed for subject 1 in Table 2 (also see 
Fig. 3) if: 

abs( L,,, - LJ,~)Isqrt(s~Iz +.s&)>sqrt(chi-sq,(0.95)), (7) 

in which LS,.= I;5 x (L,+ L,+ L,+ L,+ L,,) 

=(3.1+1.8+1.5+1.6+1.8)/5 

= 1.96 

f_,,~=1’5x(L,+L,+L,+L,+Ls) 

= ( I .4 + 0.8 + I .o + 0.0 + 0.X)/S 

=0.8 
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s:,=1/25x(s,2+s,2+sK+s,Z +&) 

= (0.28 + 0.19 + 0.18 + 0.22 + 0.20),‘25 

=0.04 

s:,=1:25x(st+sI_tsS+s~+sS) 

=(0.19+0.18+0.20+0.27+0.25)/25 

=0.04 

chi-sq,(0.95)= 16.9. 

Table 1. Minimum difference between 
IWO lambda indices needed to be 

reliable at 5% for different numbers N 
of stimuli presented to each of the two 

VHFs. 

N Minimum difTerence 

5 3.51 
25 1.57 
50 1.1 I 

250 0.50 
500 0.35 

2500 0.16 
5000 0.11 

Table 2. Lambda indices of five replications of a series of four-letter words (Series I- 5). and OF a series of (ive- 
letter words (Series 610). Grand lambda calculated with the use of Equation (4). probability of grand lambda 

being equal to zero calculated with Equation (4) and (8). probability of the IO lambdas being homogeneous 
calculated with Equations (4) and (5). Underlined lambdas differ at a 5% level from each other [Equations (4) 

and Table 37. 

Series Grand P 
1 2 3 4 5 6 7 8 9 10 Lambda (LO, (homog) 

sl 1.4 0.8 1 .o 0.0 $8 3.1 1.8 1.5 I .6 I .8 1.37 0.000 0.007 
s2 1.1 1.1 I .o 1.6 1.j 2: 1.5 2.5 2.9 1.5 1.57 OIKNI 0.310 
s3 3.1 2.2 1.6 2.2 2.4 3.0 2.x 3.0 2.6 2.8 2.53 0.000 o.s55 
s4 0.0 0.8 2.4 0.4 I.2 1.9 1.2 1.1 I .I I.1 1.07 O.WO 0.276 
s5 0.8 1.3 I .6 I .8 I .6 0.5 3.1 2.1 I .x I .6 1.49 0.000 0.033 
s6 0.2 I.2 I.1 0.5 1.9 0.5 I .7 I .x 0.6 0.6 0.95 osm 0.02x 
s7 0.8 1.2 0.9 1.5 1.6 2.1 2.4 2.5 2.5 1.6 1.67 o.OOO 0.03x 

s8 1.5 2.2 1.4 1.6 2.1 I .4 2.7 3.1 3.6 I .9 2.00 0.000 0.030 
s9 0.3 1.6 1.1 0.2 0.6 -0.4 0.2 0.6 0.6 0.1 0.54 0.000 0.170 
SlO 1.1 1.2 0.7 1.5 0.8 2.2 3.1 2.4 2.0 3.1 I .65 0.000 O.OtH) 
sll 0.1 0.4 0.2 -0.7 0.3 -0.2 -0.1 0.5 0.2 0.3 0.1 I 0.424 0.850 
s12 -0.2 1.4 0.2 1.0 0.X 1.1 I.6 0.7 I .o 0.8 0.83 0.000 0.16X 
sl3 1.2 0.0 -0.4 1.1 0.8 2.2 I .3 1.6 I .x 1.4 1.11 0000 0.003 
s14 1.4 2.0 0.8 0.x 1.7 2.0 2.1 2.1 2.0 1.6 1.62 0.W) 0.2x 1 
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The difference between five- and four-letter words divided by theirjoint SD (i.e. 4.0) lies quite 
close to the critical value (i.e. 4.1) so that YOUNC; and ELLIS’ [ 193 statement receives some 

support from the data of subject 1 in Table 2. 
However, because Marascuilo’s procedure determines the critical value in such a way that 

the joint probability of a Type-l error is smaller than or equal to r for the total set of all 
possible contrasts, it will be conservative if we are interested in a limited set of comparisons. 
for instance if we only are interested in the set of pairwise comparisons (Marascuilo‘s 
procedure yields but one significant pairwise comparison in Table 2, that between the two 
most extreme lambdas of subject 1). Therefore, if we want to limit the posr hoc comparisons 
to pairwise contrasts, it is more interesting to use a stepwise method. such as HOLM’S [9, see 
also 81 sequentially rejective procedure. In this procedure, the P-value of all I’ x (v- I),‘2 
pairwise contrasts are tabulated in an ascending order and compared with the critical value 
sr(k - i + 1 ), in which k is the total number of pairwise contrasts and i is the rank number of the 
contrast to be compared. The procedure rejects null hypotheses of no contrast as long as the 
P-values of the contrasts are below the critical values. Whenever the P-value exceeds the 
critical value, the procedure must be stopped, even if on later occasions the P-value again 
falls below the critical value. Table 3 shows how the procedure works for the data of sl in 
Table 2 (see also Fig. 3). HOLM [9] proved that the multiple alpha-level of his procedure does 
not exceed 2, a property which the more familiar multiple range test procedures of the 
Newman-Keuls type do not maintain. Table 3 contains the results of Holm’s procedure for 
pairwise comparisons. 

Table 3. Review table of the sequentially rejective test for 
subject I of Table 2. 

i L, L* II P(u) ct (I-;+I) 

3.08 0.00 4.15 0.00005 < 0.00111 
3.08 0.82 3.33 0.00086 < 0.00114 
3.08 0.83 3.09 0.00200 > 0.00116 

-stop testmg 
3.08 0.98 3.03 0.00244 0.001 I9 
1.79 0.00 2.64 0.0083 I 0.00122 

45 0.k3 0.k 0.02 0.9$783 o.dsOOo 
i = rank number of pairwise compartson. ranged in 

ascending order with respect to the p-value. 

L”. L =lambdas involved in the pairwise comparison. 
1, = standard normal value of the difference between L,, 

and L, (see Equation (2)). 

p(u) = two-tailed significance probability associated with 

11. 

: 
= multiple alpha-level. 
= total number of pairwisc comparisons mvolved in 

the analysis (here: (10x 9)‘2=45). 

A significant difference from zero of the overall lambda (I!,,,,~,) can be tested with the use of 
the standard normal distribution, for L,,, is normally distributed with variance 

7 
SI:,., = l/X( I/s,‘). (8) 
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independent [18, pp. 45&451]. That is, being correct on one trial must not be affected by the 
correctness ofthe preceding trials. This assumption will better be met if stimulus presentation 
is thoroughly randomized and if adequate fixation of the subject to the middle of the visual 
field is ensured. A careful researcher. however, might in addition want to check serial 
independence post hoc by calculating autocorrelations in the obtained data [IO, 
pp. 287-2901. The graphical analysis presented above will be of some help too, in order to see 
whether there are dependencies in the correctness of the subject’s responses. 

LATENCY DATA 

Graphical analysis 

A similar type of graph as for the accuracy data (Fig. 1) can be drawn to check whether the 
subject’s performance fluctuated during the session. A change, however, must be made 
because in most experiments only reaction times for correct answers are interesting, and the 
number of good responses differs between VHFs. Therefore, the scale of the abscissa for the 
LVF and RVF will be different, and the reaction latencies must be divided by the number of 
correct responses.* This leads to curves ranging on the ordinate from zero (at the beginning 
of the experiment) to the average response latency per VHF (when the reaction time for the 
last correct response has been entered). Figure 4 shows such curves for a good subject who 
finished an experiment in which 100 words were presented to the LVF and RVF. 

NUMBER OF STIMULI RECOGNIZED 

Fig. 4. First graphical analysis of latency data. Performance of a good sub~ecl for 100 live-letter words 
prexnted to LVF- and RVF. 

*To get a clearer distinction between the curve’r of the LVF and RVF. it is better not to take the cumulative 
reaction latencies. but the cumulative reaction latcncics diminished by a constant, thus _X(latency,-x), whew 
.x 2 minimal reactmn latent) 
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Another interesting graph is obtained by plotting the latency on the abscissa and the 
cumulative proportion of latencies on the ordinate. The rationale for this approach is that 
every difference between the mean reaction time of RVF and LVF must be characterized by a 
shift of the complete distribution to be genuine. Differences due to an excess of very low or 
very high reaction latencies are always more or less questionable. A good performance 
should be marked by two well separated S-shaped curves. The curves will slightly differ in 
form because reaction time distributions are known to be positively skewed and to have a 
positive correlation between mean and variance [ 133. 

An example of how the graph should look for stimuli preferentially processed in the left 
hemisphere, is given in Fig. 5 (Fig. 5(A) gives the ideal situation. Figure 5(B) the actual 
performance of a good subject for 100 words presented to the RVF and LVF). 

An advantage of the graphical display is that it is rather insensitive to outliers at the lower 
or the higher end of the scale. It also gives a more complete picture than mean or median 
latencies which, because of the specific distribution of reaction times, sometimes are biased 
estimators of the population values [16]. 

Statistical analysis 

LEVY [12] holds that the variability in reaction latencies is inherent to hemispheric 
specialization and therefore proposes to use the point-biserial correlation coefficient (rph) as a 
better laterality index than the mere difference between the mean latency for the LVF and the 
RVF. An empirical VHF study in which two series of 100 words were presented five times [4] 
added support to Levy’s position in that test-retest reliability was higher for the r,,,, index 
than for the difference index.* It also pointed to the high correlation between the r,,,, and the 
difference index. Therefore, for the rest of the article we will confine ourselves to the point- 
biserial correlation coefficient. 

The r,,,, is calculated with the use of Equation 9. 

r 
RT,- RT, 

ph = s 
x (P,dPR)l=. 

RT,_=mean reaction time for LVF, 

RT, = mean reaction time for RVF, 

P,, = proportion of stimuli presented in LVF, 

P, = proportion of stimuli presented in RVF, 

s = SD of all reaction times 

Though the exact distribution of rph can be determined, DAS GUPTA [S] gives a 
variance-stabilizing transformation of rpb, that approximately leads to a normal distribution 

‘The relation betw,ecn the rehahility of the ditlkrence score (or the rph coefliclent) and the reltahiltty of the 
measurch 111 the VHFs depends on the covariation between the measures of the VHFs ([I?]. pp. 467-469). If the 
covariatmn IS posittve. the reliability of the difference (r,,,,) is lower than the reliahillry of the measures; if the 
covarlatmn IS negattve. the rellahihty of the difference (r,,,,) is higher; and if the covarlatmn IS zero. reliabilities of 
latcrallfy Indices and raw measurements are equal. 
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and therefore allows the same analyses as described for the lambda index. The 
transformation is given by: 

.f(r,,) = ’ (A +B)1’2 
x 0.5 x I + C)/( 1 - C)l. 

A=(P,+P,K)I(P,+PRK), 

K=s;!s;, 

si = variance of RVF, 

.s2 = variance of LVF, L 

1 
B=-- 1.5 x 

P, + P,K 
+ 0.75 x 

(1-K)’ xp p 

4PLPR P, + P,K (PL+PRK)’ L R’ 

C= 
rph x (A + B)‘;’ 

(A+Bxr$)“” 

The variance off(r,,) is the reciprocal of the total number of stimuli administered (1,‘N). 
A difficulty with Das Gupta’s transformation is the explicit assumption it makes that the 

latencies are normally distributed in the RVF and LVF. As is well known [ 133 and indicated 
above, response times are not characterized by a normal but a positively skewed distribution. 
We have done extensive simulations to investigate the effect of the departure using a 
lognormal distribution as an approximation, and the general result is that a positively 
skewed distribution leads to a small reduction of the power of the test. The extent of the 
reduction depends on the size ofr,,, (the more it deviates from zero. the greater the reduction), 
and the ratio of the number of correct responses in the RVF and the LVF (the reduction is 
smallest when the ratio is close to one), but not (much) on the total number of correct 
responses provided n > 50. 

Three attitudes might be adopted concerning the loss of power. First, a better 
transformation might be sought; second, the logarithm of the response latencies can be used 
as a dependent variable; and third, the loss may be accepted as such. In this manuscript we 
adopt the last attitude. Finding a better transformation would make things rather 
complicated [S] and might be well beyond the wit of most laterality researchers (including 
the authors’). Taking the logarithm of the response times implies a double transformation to 
be made. so that the final index loses much of its understanding, certainly if we take the 
benefits into consideration. The conservatism will be larger for substantial r,,,,‘s and/or 
differences in accuracy between the two VHFs, both situations in which statistics are not 
needed that much to make firm conclusions about the laterality pattern. Table 4 contains the 
results of some simulations and gives an idea of the extent of information lost in typical 
situations. As can be seen, the drop in power for these less extreme situations is well within 
the limits. 

Testing the significance ofan rph is carried out analogously to the testing ofa lambda index. 
Because [‘(r,,,,) is normally distributed with variance I jh;. a standard normal table can be used 
to test for significance and to calculate 95% confidence intervals. Figure 6 shows the results 
of the latter analysis for the correct responses of the subject mentioned in Fig. 3. 

Again. the size of the confidence regions is noteworthy and urges to present sufficient 
stimuli to all subjects. Equation (I 1) gives r,,,, as a function of,/‘(r,,). needed to determine 
confidence intervals. 
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Table 4. Comparison of normal and lognormal distributrons with respect to the normality assumptton 
of Das Gupta’s transformation of rpb. I[= the expected value of the distribution. a=SD. ,V= the 

number of observations taken from the distribution. rBh = the point-biserial correlation that is to be 
expected. and P(u)=one-tailed significance probability associated wtth standardized value a. Data 

based on 20.000 rPws per distribution. 

Distributions P 0 IV r Ph 
P( -7.58) P(- 1.96) P(l.96) P(2.58) 

715.4+u x 158.2 715.4 158.2 

622.O+u x 129.5 622.0 129.5 

200+exp(6.2+ux0.3) 715.4 158.2 

200+exp(6.0+u x 0.3) 622.0 129.5 

715.4iux 158.2 715.4 158.2 

622.0 + u x 129.5 622.0 129.5 

200+exp(6.2+ux0.3) 715.4 158.2 

200+exp(6.0+ux0.3) 622.0 129.5 

829.5-t~ x 193.2 829.5 193.2 

622.O+u x 129.5 622.0 129.5 

2OO+exp(6.4+ux0.3) 829.5 193.2 

200+exp(6.0+ux0.3) 622.0 129.5 

829.5+u x 193.2 829.5 193.2 

622.0 + u x 129.5 622.0 129.5 

2OO+exp(6.4+ux0.3) 829.5 193.2 

200+exp(6.0+u x0.3) 622.0 129.5 

24 
0.31 0.005 

38 

24 
0.31 0.004 

38 

48 
0.3 I 0.005 

76 

48 
0.31 0.003 

76 

24 
0.54 0.003 

38 

24 
0.54 0.001 

38 

31 
0.54 0.003 

31 

31 
0.54 0.003 

31 

0.024 0.034 

0.020 0.023 

0.025 0.032 

0.019 0.020 

0.02 I 0.045 

0.009 0.028 

0.021 0.034 

0.015 0.023 

Expected probabilities 0.005 0.025 0.025 

O.(x)9 

0.005 

0.008 

0.003 

0.013 

0.007 

0.009 

0.005 

0.005 

46letter words 

I \ 

5-letter words Z4L LSL Z(4L15L) 

, \ AA A 

Fig. 6. Point bwridl corrcI;itIons and 95”,,, conlidcncc Interval\ for a VHF-study in which live \crw of 
four-letter words and five scr~es of five-letter \rordr w’cre admmlstercd (data from one W~JCCI). Ihlii 

for the separate series. as well a\ l’or the sum of the four-lcttcr word sews (Z4.L). the sum of the livc- 
letter word wrw (X5L I. and the wm of all scrics (Z(4L + 5L)). 
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1 Ax(E-l)z 
r ph=w(.f’(r,,)) x sqrt 

I [ox(E+1)]2-Bx(E-1)’ ’ 
(11) 

sgn(J’(r,,,)) = + 1 iff(r,,) 2 0 and - 1 iff(r,,) < 0. 

D = sqrt(A + B), 

E=exp[J‘(r,,) x D x 23. 

Homogeneity of r point-biserial correlations is tested with the statistic of Equation (I?). 
which has an approximate chi-square distribution with r-l degrees of freedom (see the 
discussion of the lambda index for more information). 

fb pb,,, I= [Xf (rpb, )j$]iC 1 is:. 

If Cu,? is significant. contrasts can be tested using the same equations as Equation (6) and 
Table 3. 

The dtstrtbutron of,f(r,,esl ) is approximately normal with variance 1 “X( I is,?), so that a 
significant difference from zero of the grand point-biserial correlation is easily testable. 
Table 5 gives the result of the analyses for homogeneity and significance of,f‘(r,,~,aZ) for the 
data of the experiment leading to Table 2 [4]. 

Table 5. Point-biserial correlations of five replications of a series of four-letter words (Series 1 5). and of a 
scrtcs of five-letter words (Series 610). Grand rp,, calculated with the use of Equations (101. (1 I ). and (I?). 

probability of grand I’,,, being equal to zero calculated with Equations (8). (IO). and (II). probability of the IO 
rph+ betng homogeneous calculated with Equations (IO) and (I?). Underlined rpbs differ at a 5”~~ level from each 

other [Equations (IO) and Table 31. 

Series Grand P P 

I 2 3 4 5 6 7 8 9 10 Tph (=O) (homog) 

bl 0.50 0.3 I 0.16 0.37 0.40 0.33 0.30 0.30 0.40 0.50 0.39 0.000 0.736 

\2 024 0.0’) 0.07 0.71 0.22 0.75 0.35 0.42 0.60 0.40 0.31 (~.OOO 0.026 

\.3 0.34 0.53 0.37 0.56 0.19 0.19 0.59 0.41 0.54 0.44 0.49 O.(H)(~ 0.25x 

+l 0.20 0.35 0.31 0.34 0.35 0.20 0.31 0.00 0.23 0.3X 0.30 0.000 0.589 

\s 0.7x 0.33 0.44 0.23 0.03 0.16 04X 0.62 0.35 0.44 0.39 O.OO(~ 0.037 

rh 0.77 0.25 0.14 0.30 0.07 -0.04 0.00 0.36 0.40 -0.06 0.20 0.00 I 0.458 

\: 0.15 0.1X 0.36 0.17 0.25 0.73 0.55 0.54 0.15 0.54 0.37 0.000 0.243 

\X 0.27 0.36 0.12 0.36 0.34 0.08 0.38 0.35 0.17 0.55 0.3 I 0.000 0.76X 

5’) 0.13 0.07 O.IX 0.16 0.21 -0.75 0.29 0.22 0.12 0.23 0.17 0.002 0.549 

\I0 ~o.tl7 0.34 (1.17 0.12 0.22 0.29 0.35 0.21 0.1’) 0.32 0.23 0.000 0.755 

\I I -0.1 I -0.OI 0.0’) -0 1 I 0.00 0.33 0.07 0.23 0 II -0.03 0.05 0.270 0.47 I 

\I? ~ 0.03 0.02 -0.01 0.19 0.17 0.14 -0.0x 0.26 0.05 0.27 0.10 0.0’8 0.687 

\I3 0.07 0 30 0.2’) 0.15 0.00 0.32 0.73 0.49 0.17 0.12 0.25 O.(h)0 0.054 

\I1 0.32 0 I7 0.25 0.x 0.15 -0.01 0.42 0.33 0.07 0.19 0.21 o.OOo 0.77x 

CONCLUDING REMARKS 

The foregoing should provide any reader with the necessary information to make firm 
statements about the performance of individual subjects and/or patients. Graphical analyses 
allow to see whether the pattern of results is stable (see Fig. I. 2. and 4). Statistical analyses 
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make it possible to assess the reliability of obtained VHF differences, both within and across 
experimental sessions, and to calculate confidence regions around the parametric values 
obtained (see Fig. 3 and 6). Though the calculations involved may look a little bit 
complicated to a not mathematically oriented investigator. they are very easy to implement 
in a user friendly computer program.* 

A warning, however, must be given to conclude. No matter how stable and reliable the 
results of a subject may be, reliability alone never suffices to generalize from data to. for 
instance, statements about the cerebral organization of a subject. To do so, the results must 
first be compared to other measures of the concept under investigation. As an example. let’s 
see what we can conclude from the data of the experiment displayed in Tables 2 and 5 (also 
see [4]). About 50 words were presented to the LVF and the RVF. Because processing of 
words is known to be a function of the dominant cerebral hemisphere, the data urge one to 
conclude that all subjects, except subject 11, have left hemisphere dominance, and that 
subject 11 has a bilateral cerebral organization. However, because words are found to favor 
the RVF for more reasons than left hemisphere dominance for verbal stimuli [3.7, 11. 171. it 
might be asked whether the lack of a clear RVF advantage for subject 11, and to a lesser 
extent for subject 12, could be an indication of right hemisphere dominance. To check this 
possibility, we ran two further experiments on the two subjects.? Four replications of an 
object naming latency test (ONLT) and two replications of a clock reading latency test 
(CRLT) were administered. Prior experimentation had indicated that the ONLT leads to a 
RVF advantage in right-handed subjects (mean rph =0.06, also see [ 1 SJ), and that the CRLT 
leads to a LVF advantage in right-handed subjects (mean rpb= -0.06, also see [ 1, 151). The 
results of the four replications of ONLT for subject 11 were: 0.06,0.03,0.05, and 0.21: those 
for the two replications of the CRLT: -0.03, and -0.06. Thus, the overall picture of 
subject 11 contradicts the possibility of right hemisphere dominance; it even questions the 
possibility of bilaterality suggested by Tables 2 and 5. On the other hand, the results of 
subject 12 on the ONLT and the CRLT were respectively ONLT: -0.25, -0.45. 0.00. 
-0.22, and CRLT: 0.01. 0.05; which is much stronger evidence for right hemisphere 
dominance. The results of the ONLT and the CRLT, therefore, seriously question the 
validity of a word VHF recognition task as the sole test of individual human cerebral 
asymmetry. We are now investigating the merit of a battery of three tests, consisting of word 
recognition, ONLT. and CRLT. in the hope that this will suffice to distinguish satisfactorily 
between left and right cerebral dominant subjects. 

A~lino,clcdyme,lr-The authors wish to thank the two anonymous reviewers for their many helpful comments on an 
earlier draft of the manuscript. 
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