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Abstract

A basic assumption of the lexical decision task is that a correct response to a word
requires access to a corresponding mental representation of that word. However,
systematic patterns of similarities and differences between words and nonwords can
lead to an inherent bias for a particular response to a given stimulus. In this paper
we introduce LD1NN, a simple algorithm based on one-nearest-neighbor
classification that predicts the probability of a word response for each stimulus in an
experiment by looking at the word/nonword probabilities of the most similar
previously presented stimuli. Then, we apply LD1NN to the task of detecting
differences between a set of words and different sets of matched nonwords. Finally,
we show that the LDINN word response probabilities are predictive of response
times in three large lexical decision studies and that predicted biases for and against
word responses corresponds with respectively faster and slower responses to words

in the three studies.



The lexical decision task in psycholinguistics

The lexical decision task is one of the most popular %&'(" in psycholinguistics.
Participants in visual lexical decision experiments must decide as quickly as possible
whether a letter string presented on a computer screen is a word or not by pressing
a button corresponding to each of those answers. If the presented letter string is a
word, the time between the presentation of the stimulus and the time the button
press is initiated, is taken as a measure of the accessibility of that word in the mental

lexicon.

The popularity of the visual lexical decision task is undoubtedly because it is a very
cheap method, from its implementation to the analysis of its results. As the stimuli
are letter strings, the experimental materials, once chosen, require no further effort
to produce, in contrast to tasks where, for instance, recorded words or pictures are
used. The required experimental setup is also very basic, consisting of a computer
and a device to collect key presses. The experiment is easy to explain to participants
and many responses can be collected in a single experimental session. For instance,
in a large scale lexical decision study where responses were collected for most
mono- and disyllabic word in Dutch, Keuleers, Diependaele, and Brysbaert (2010)
found that most participants were able to process nearly 2000 stimuli in a one hour
session. Finally, the collected data —reaction times (RTs) and accuracies— are easily
interpretable without further processing, and are analyzable using well-known and

powerful statistical methods.

Despite all these advantages, the lexical decision task presents the experimenter

with a number of methodological challenges. For instance, if the task is used to



examine differences in processing time between different groups of words (for
instance animate vs. inanimate nouns, verbs vs. adjectives, etc.), then the words in
both groups must be matched on several other variables, such as word frequency,
word length, number of syllables, neighborhood density, and other variables well
known to affect lexical decision RTs." In this paper we will focus on an even more
basic but rather overlooked problem, namely that, in order to be valid, a lexical
decision task requires that the words and nonwords should not be discriminable
without knowledge of the words in that language. Imagine a participant who is doing
a lexical decision experiment in a language that is unknown to him. If after a while,
that participant, given feedback on the lexicality of previously presented stimuli,
starts to respond above chance level, he is clearly not doing a task that requires
lexical access. Instead, he learns to do stimulus discrimination task based on

inherent systematic differences between the two types of stimuli.

Discriminating between words and nonwords without access to the mental lexicon

The lexical decision task hinges on the assumption that in order to decide that a
stimulus is a word participants must access a mental representation of that word.
For this assumption to hold, participants in a lexical decision experiment must not be

able to discriminate word stimuli from nonword stimuli solely on the merits of

"IWord frequency, in particular, has such a large influence on lexical decision RTs
that researchers presenting results from lexical decision experiments are routinely
asked the devastating question ‘Are you sure it’s not a frequency effect? referring to
the fact that a difference between two conditions very often turns out to be due to a
difference in word frequencies instead of due to a difference in the variable the
researchers think they are studying.!



differences and/or similarities between and within the two types of stimuli. If they
are able to do so, the lexical decision task can possibly be performed without lexical
access. The reaction times to words would no longer reflect the time course of

lexical access, rendering the results unreliable.

Let us imagine a computer algorithm without any previous knowledge of words that
is presented with the stimuli from a lexical decision task in the order in which they
are presented to the participant. The algorithm’s task is to decide whether each
presented stimulus is a word or not, keeping only a record of the presented stimuli
and whether each one was a word or a nonword. If the algorithm predicts above
chance level which stimuli were words and which were not, we know that there
exists a method that does not require knowledge of words in the language to

discriminate between the words and nonwords in the experiment.

In this paper, we present a very simple algorithm that performs the task of
discriminating between words and nonwords in a lexical decision experiment. At the
core of this algorithm are two widely known machine-learning methods. The first is
one nearest neighbor classification (1-NN), which tries to predict the class of a novel
stimulus by looking at the majority class of its nearest neighbors, given some metric
defining the distance between two stimuli (Fix & Hodges, 1951). The second is the
Levenshtein distance (Levenshtein, 1966), which defines the distance between two
strings as the minimal number of substitutions, deletions, and insertions of

characters required to transform one string in the other?. For instance, the

#1+,1-9%'1./001,%!-234121,%&%-5,6!5/0!&4750-%82!/'1'1%81!%0&9-%-5,&4!:1;1,'8%1-,!
9-'%&,.16!-,1<8.8!&!%0&,'35'-%-5,!=1%<11,!%<5!&9>&.1,%!.8&0&.%10'!-'1.5/,%19!&'!
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Levenshtein distance between the strings “alcirans” and “walfine” is 5, because a
minimum number of 5 steps are required to transform one into the other: (1)
replacing the final character of ‘alcirans’ by ‘e’ gives ‘alcirane’, (2) deleting the 5
character gives ‘alcirne’, (3) again deleting the 5™ character gives ‘alcine’, (4)
replacing the third character gives ‘alfine’, and (5) inserting ‘w’ before the 1°*

character gives ‘walfine’.

Combining one nearest neighbor classification with the Levenshtein distance
produces an algorithm, which we will call LDINN, and which can be described as

follows:

1. Compute the Levenshtein distances between the currently presented
stimulus and all previously presented stimuli.

2. ldentify the previously presented stimuli that are at the nearest distance
from the current stimulus.

3. Compute the probability of a word response for the given stimulus based on

the relative frequency of words among the nearest neighbors.

Table 1 illustrates the application of the EDINN algorithm to a set of 10 randomly

chosen stimuli.

Insert Table 1 here
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In the remainder of this paper, we first apply the LDINN algorithm to mock datasets,
examining the extent to which it can successfully discriminate between words and
different kinds of nonwords. Following that, we apply LDINN to data from three
large-scale lexical decision experiments, showing that there is a significant inherent
bias for or against giving a yes response to word stimuli in all these experiments.
Finally, we establish that the classification probabilities derived from LD1NN are also

significant predictors of RTs in the mentioned experiments.

Applying the LD1NN algorithm to mock data

To test the usefulness of the LDINN algorithm we first applied it to some sets of

mock stimuli.

Words vs. random letter strings

The first set of stimuli we tested consisted of a set of 2500 English word stimuli with
lengths of 4 to 10 letters, selected at random from the British Lexicon project
(Keuleers, Lacey, Rastle, & Brysbaert, under revision) and 2500 random letter strings,
matching the words on distribution of lengths (i.e., as many nonwords of length 4 as
words of length 4, etc.). Nonwords were constructed by first choosing a length
between 4 and 10, and then giving equal probability to each of the 26 letters of the
alphabet at each character position, resulting in stimuli such as bged, tvhdfeav,
wxzeacmquz, bilxb, or mfofumfsz. The word and nonword stimuli were presented to

the LD1NN algorithm in randomized order.

Figure 1 shows that LDINN easily detected the systematic difference between words

and the random letter strings. Each vertical bar in the histograms should be read as



the percentage of word stimuli (left subpanel) and nonword stimuli (right subpanel)
that had a particular bias for a word response (positive) or for a nonword response
(negative). The left subpanel shows that more than 80 % of all word stimuli in the
examined set had a full bias for the word response (all the nearest neighbors EDINN
found for these stimuli were words). In contrast, the right subpanel shows that only
15 % of all nonwords had a complete bias for a word response, while almost 40 % of
nonwords had a full bias against a word response (all the nearest neighbors EDINN
found for these stimuli were nonwords). It is clear that the distributions of bias for
word responses are so different for words and nonwords that a correct prediction
can be made in most cases. The right panel of Figure 1 illustrates this. At the
beginning of the experiment, the numerical bias (the grey line), is slightly in favor of
words, simply meaning that the proportion of word stimuli was higher at the
beginning of the experiment. However, the average word response bias for word
stimuli rises to nearly 90%, meaning that it is possible for LDINN to identify words
with 90% accuracy. It is harder for the algorithm to correctly reject nonwords, but
the bias is still very substantial (over 25% better than chance). As expected, a logistic
regression indicates that word bias is a significant predictor of stimulus type (z = 26,
p < .001). The direction coefficient for the word response bias can also be used to
calculate the odds for a word decision: A stimulus for which LDINN predicts a word
response, is 2.9 times more likely to be a word than a stimulus for which LDINN

predicts a nonword response.

Insert Figure 1 here




Discriminating between words and ARC nonwords

The example above indicates that it is easy to distinguish word from nonwords if the
nonwords are random letter strings. For empirical evidence that these nonwords
lead to fast responses and small frequency effects in psychological experiments, see
Gibbs and Van Orden (1998) or Ghyselinck, Lewis, and Brysbaert (2004), among
many others. A lot of effort has been put in making nonwords that should make
lexical decision tasks better. One of the most systematic efforts is the ARC nonword
database (Rastle, Harrington, & Coltheart, 2001), a collection of 358,534 English
pseudowords (nonwords that are phonologically and orthographically legal in
English). Typical examples of nonwords in the ARC database are twund, blerm,

prause, shroaze, and splitch.

We ran the LD1NN algorithm on the words used in the previous simulation, but now
paired them with nonwords taken from the ARC online database
(http://www.maccs.mqg.edu.au/~nwdb/), selecting only nonwords with existing
onsets and legal bigrams and making sure that the distribution of word lengths

matched the distribution of nonword lengths.

Figure 2 shows the results of the simulation, which are quite surprising. While the
algorithm does not detect words as well as in the experiment with random letter
strings, it is much easier to distinguish nonwords from words than in the previous
simulation. It is 4.1 times more likely that a stimulus is a word when LD1NN predicts
a word response than when the algorithm predicted a nonword response. A likely
explanation for this result is that the ARC nonwords are more similar to each other

than the random letter strings are to each other, so that LDINN is more likely to find



nonword neighbors for the ARC nonwords than for the random letter strings, which
are more heterogeneously distributed in letter space. Therefore, even if some words
are more similar to ARC nonwords than to random letter strings, the net result is
that discrimination is easier when pairing words with ARC nonwords. It should be
noted that the ARC database provides a whole range of options for selecting
nonword stimuli based on specific criteria that, when carefully used, can probably

result in better nonword stimuli. We only took random samples matched for length.

Insert Figure 2 here

Discriminating between words and Wuggy nonwords

The simulation above showed that the LD1INN algorithm easily detected the
difference between words and randomly selected nonwords from the ARC nonword
database. While there is no immediate evidence that participants in a lexical decision
experiment would also find it so easy to detect this difference, in principle they can
and so it is a wise precaution to use additional constraints when making nonwords
for an LD experiment. One of the methods to make nonwords more alike to words is
by making sure bigrams in the words statistically match bigrams in the nonwords.
Another simple and common method is to change one or two letters in existing
words. This should give very good results, as nonwords are guaranteed to be very
similar to existing words. However, as we will see later, this may lead to other
problems, especially when the nonwords are used in the same experiment as the

words they are based on.



In Keuleers and Brysbaert (2010), we proposed a method to generate nonwords for
lexical decision experiments in a more principled way.3 The Wuggy algorithm makes
the task of generating nonwords for an experiment with given nonwords much
easier. Wuggy’s default options are to generate nonwords that match input words
on length, on subsyllabic structure, and on transition frequencies between
subsyllabic segments. In addition, the nonwords have a required 2/3 subsyllabic
overlap with the words they are based on, so that these nonwords cannot be easily
recognized as being based on particular words (as is the case when one or two

letters are changed in longer words).

We applied the LD1NN algorithm to a mock experiment containing the 2500 words
used earlier and 2500 matching nonwords generated by Wuggy. Out of the 10
nonwords proposed by Wuggy for each word, we automatically chose its best
proposed match, unless the word was an inflected form, in which case we gave
preference to a nonword matching the inflectional suffix (such as the —s in houses, or

the —ed in walked).

As can be seen from Figure 3, the word bias is sharply reduced compared to the

previous simulations. Both distributions are very similar, and the odds are also much

SI@81!K/77E!&4750-%82!<&'.01&BHWIHD!,1.1"-%R3!we were setting up lexical
decision experiments with more than 28,000 trials per participant (Keuleers,

Diependaele & Brysbaert, 2010; Keuleers, Lacey, Rastle, & Brysbaert, under review),
we were afraid that even the smallest patterns in the stimuli would be picked up by

participants after some time.



closer to 1, indicating that the stimuli are far more balanced. However, there is still
some bias present and the algorithm is able to discriminate words from nonwords
better than chance. Interestingly, the bias is reversed with respect to the previous
two simulations: A stimulus is slightly more likely to be seen as a word by the
algorithm when it resembles previously presented nonwords more than previously
presented words. The same is true for nonwords: A stimulus is slightly more likely to
be considered as a nonword when it resembles previously presented word rather
than previously presented nonwords. The odds are 0.76 to 1, which means that the
algorithm is 1.31 times more likely to put a presented stimulus in the other category

than the one it belongs to.

Insert Figure 3 here

The likely reason for this change in odds compared to the previous simulations is
that, since the nonwords are based on the words in the experiment, LDINN often
finds that a word that served as a template for generating a nonword is among its
nearest neighbors, and vice versa. Most nonwords are more similar to one of the
words in the experiment than to another nonword. Similarly, most words are more
similar to one of the nonwords presented than to another word. To a large extent,
Wuggy’s default setting of requiring a 2/3 overlap between words and matching

nonwords shields against this effect, but is not enough to completely prevent it.

Comparing nonword generation approaches from lexical decision megastudies



In the next section we will look at stimuli from existing experiments and ask to what
extent the response probabilities generated by the EDINN algorithm can predict

participant RTs.

We will look at lexical decision data from the English Lexicon project (Balota et al.,
2007), the French Lexicon project (Ferrand et al., 2010) and the British Lexicon

project (Keuleers et al., under review).

The English Lexicon project

The English Lexicon project’s aim was to collect lexical decision data for some 40,000
English words. More than 800 participants each responded to about 3400 stimuli
each, yielding about 34 measurements per stimulus. The 40,000 nonwords for the
English lexicon project were constructed manually by changing one or two letters in
the word stimuli so as to create legal nonwords. Because the nonwords were based
directly on words, they were guaranteed to look a lot like words and, therefore, the
method, although labor intensive, at first sight seems ideal for the purpose of
making a valid lexical decision task. On the other hand, as our simulation with the
Wuggy nonwords showed, this way of making nonwords may also create a reverse
bias, depending on the extent to which the nonwords presented to each participant

resemble the words more than the nonwords.

We applied the LD1NN algorithm to the stimuli in the same order as the participants
had seen them. Figure 4 shows the result for a randomly chosen participant, which,
however, is representative of the pattern observed with all participants. The left

panel shows that words are much biased towards nonword decisions, whereas the



nonwords are very biased to word decisions. The reason is the same as for the
Wuggy algorithm: Because the nonwords were based on the words and were very
similar to them, the closest neighbor of a word stimulus mostly was the nonword
created from it, and vice versa. The odds for words are 0.34, meaning that word
response according to LD1NN is about 3 times less likely when a word is presented

than when a nonword is presented.

Needless to say, the bias present in the English Lexicon Project is a rather confusing
one, as the information within the stimulus materials goes against the response that
must be made. On the one hand this could slow down participants; on the other
hand it could also speed up responses, if participants can learn to provide a different

response than the one previously given to the closest neighbor of the stimulus.

To find out whether the bias picked up by the LDINN algorithm also influenced the
participants of the ELP, we ran a linear mixed effects model on the correct reaction
times for the first 100 participants, using the LD1INN word probability as a predictor
and participants as a random effect. Additionally, trial order was included in the
analyses to make sure that any effect of LDINN word probability was not simply an
artifact of trial order. For word RTs, the results showed significant effects of trial
order (t= 13.73), word probability (t=6.55)", and the interaction between both
(t=5.39). The estimate for the direction coefficient of word probability was 33.24
(SE=5.07) meaning that, on average, responses slowed down by about 30msec when

LD1INN predicted a word probability of 1 compared to when LD1NN predicted a

) IP-values are not directly estimable using mixed effects models, but a value of t>2 is
often taken as representing a robust significant effect. Estimation with MCMC
sampling (Baayen, Davidson & Bates, 2008) showed that all effects reported as
significant in this paper, were significant at p<.001.!



word probability of O for a particular stimulus. Thus, participants responded very
much like LDINN would do and took more time to decide that a stimulus was a word
when it resembled previously presented words more than when it presented
previously presented nonwords. The effect of word probability remained '-7,-D-.&,%!
L'M$?I#When we added the most important predictors of lexical decision RTs (word
frequency and word length) to the model (word frequencies were taken from
SUBTLEX-US, Brysbaert & New, 2009). The direction of the coefficient of the effect of
word probability stayed in the same order 19.29 (SE = 4.92). For nonwords, the
effect of trial order was significant (t = 21.54), as was the effect of word probability (t
=39.67), with its direction coefficient (35.2) indicating slower responses to

nonwords with rising word probability. The interaction effect of trial order and word
probability could not be included in the analyses for nonwords because of its high

correlation (.93) with the main effect of word probability.

The French Lexicon project

In the French Lexicon Project (FLP), Ferrand et al. (2010) collected lexical decision
data for 38,840 French words and the same number of nonwords from 975
participants who each responded to 2000 stimuli. The FLP’s design was very similar
to that of the ELP’s, but crucially differed in the way the nonwords were constructed.
Monosyllabic nonwords were created by combining onsets and rimes of existing
monosyllabic words, and polysyllabic nonwords were created by combining syllables
of existing polysyllabic words. In addition, the experimenters made sure that the

nonwords matched the words in the experiment on word length, on number of



neighbors (defined as the number of words at Levenshtein distance 1), and on the

mean, minimum and maximum of the word stimuli’s bigram and trigram frequencies.

Since the method for nonword creation in the FLP was so different from that in the
ELP, we expected a different picture to emerge when running the LD1NN algorithm
on the FLP data. Figure 5 shows the results of that simulation on the stimuli from a
random participant in FLP. The biases are far less skewed than in the ELP, and are in
the proper direction. The LDINN algorithm is more likely to predict word for word
stimuli and to predict nonword for nonword stimuli. The logistic regression indicates
that LD1INN significantly distinguishes words from nonwords (z=6.2, p <.001), and is
1.6 times more likely to give a word response to a word stimulus than to a nonword
stimulus. At the same time, it is important to realize that the data for FLP are based
on 2000 trials only, rather than the 3400 trials used in the ELP. As can be seen in the
right panel of Figure 5, the average word bias is slightly growing with trial order, so
that a like-for-like comparison would be less negative for ELP. Still, based on the
analysis with the LDINN algorithm, the nonword construction method of the FLP

seems to be better suited for lexical decision than the one used in the ELP.

We ran linear mixed effects analysis on the RTs of the first 100 participants of the
FLP, using the word probability from LD1INN and trial order as fixed effects and
participants as random effects. For RTs on words we found an effect of trial order
(t=7.73), but failed to observe a significant effect of word probability (t = 0.78) or an
interaction between trial order and word probability (t = 1.93). However, when we
included word frequency and word length in the analysis, the effect of word

probability became significant (t = 2.91), and the direction coefficient (-10.10, SE=!



3.47) indicated a speedup of RT with word probability (word frequencies were taken
from New, Brysbaert, Veronis, & Pallier, 2007). For nonwords, both the effects of
trial order (t = 22.22) and word probability (t=3.75) were significant, and the
direction coefficient indicated a slowdown of RT with increasing word probability
(14.46, SE=3.85). So, for FLP the results of the participants are fully in line with the

predictions of LDINN.

Insert Figure 5 here

The British Lexicon project

The British Lexicon project (BLP, Keuleers, Lacey, Rastle, & Brysbaert, under review)
presents a radical departure from the earlier methods for collecting lexical decision
RTs. In contrast to the ELP and FLP studies, the data in the BLP were collected on a
small number of participants who responded to a far larger number of stimuli
(28,730 per participant). This method, pioneered by Keuleers, Diependaele, and
Brysbaert (2010) increases data collection efficiency and allows for more powerful
statistical analyses, but at the same time radically increases the risk that the
participants will detect systematic differences between word and nonword stimuli.
The authors of the British Lexicon project chose to use the Wuggy algorithm
described earlier to generate nonwords, using the following criteria: (1) the nonword
matched the syllabic and subsyllabic structure of the target word, (2) it differed from
the target word in exactly one subsyllabic segment (onset, nucleus, or coda) for
monosyllabic target words and in two subsyllabic segments for disyllabic target

words, (3) the transition frequencies of the subsyllabic segments of the target word



were matched as closely as possible, and (4) the morphological structure of the
word was retained (e.g., if the word was a plural form, we tried to make a matching

pseudo-plural).

Figure 6 shows the results of running the LD1NN algorithm on a random participant
from the BLP, and shows that there is no detectable bias for nonwords. On average,
the nonword stimuli resemble previous word and nonword stimuli to the same
extent. However, the logistic regression showed a significant bias in favor of word
responses for word stimuli (z=13, p <.001), with the odds indicating that a word
decision was 1.3 more likely when a word was presented than when a nonword was
presented. Of all the simulations we performed with LD1NN, this one has the odds
ratio closest to 1. It is all the more remarkable that the odds for word decisions

remain stable despite the presentation of 28,000 trials.

Insert Figure 6 here

As for the two previous datasets, we performed a linear mixed effects analysis on
the BLP RTs, including all 78 participants. For the word RTs, we found a significant
effect of trial order (t = 51.80), and LDINN word probability (t = 12.13), but no
significant interaction between these two variables (t= 1.47). Again, the direction
coefficient indicated faster RTs to words with higher word probabilities (-13.49, SE=!
1.11). Adding frequency and word length to the analysis did not bring any major
changes in the magnitude or direction of the effects. The analysis for the nonwords
indicated a significant effect of trial order (t = 104.15) and of word probability (t =

16.06), with the direction coefficient (15.87, SE=0.98) indicating slower RTs with



higher word probabilities. The interaction effect of trial order and word probability

was also significant (t = 7.35).

It is remarkable that despite the high similarity between words and nonwords in the
BLP study we still found such statistically strong effects of LDINN word probability .
In this respect, it must be kept in mind that the BLP design enables very powerful
analyses (based on a full rectangular matrix of participants x stimuli). Also it must be

kept in mind that the participants responded to many more trials than in ELP or FLP.

A final important observation is that, again, the direction coefficients for word
probabilities were in the expected direction, with faster RTs for words with higher

word probabilities and slower RTs for nonwords with higher word probabilities.

Discussion

In the beginning of this paper, we observed that when the difference between words
and nonwords in a lexical decision task can be detected without knowledge of the

words in a language, the task in principle does not require lexical access to be solved.
Therefore, a bias for word or nonword responses based on systematic differences

between the stimuli may be an important factor in an experiment. Indeed, we found
that an algorithm without lexical knowledge based on word and nonword similarities
(called LDINN) for various sets of stimuli was able to separate words from nonwords

better than by chance.

At this point, it may be remarked that the LD1NN algorithm does require lexical
knowledge to provide feedback about the lexical status at the end of each trial (on

the basis of which the algorithm learns to discern words from nonwords). This is true



and it is in line with the observation that participants usually are aware of the fact
that they just made an error. However, this feedback information has more time to
come into play than the information on which the decisions are based. In addition, it
is imaginable that approaches can be developed that do not require feedback. After
all, the algorithm only picks up biases present in the selection of both types of

stimuli.

We see the primary application of the LDINN algorithm as a precautionary measure,
to detect systematic biases in sets of stimuli for new experiments, and to adjust
these so that decisions cannot be based on sublexical information. As the interest in
lexical decision experiments for the establishment of re-usable databases grows, and
as experiments get longer, such precautions become more and more important.
Evidently, LDINN can also be used to analyze stimuli from existing experiments to

highlight potential difficulties and to guide re-analysis.

We showed that different ways of making nonwords yield different response biases.
As probably every seasoned experimenter knows, using random letter strings as
nonwords is not advisable, as the words are very easily detectable even without
much knowledge of the words. More surprisingly, we showed that very much the
same biases were present for random samples of nonwords from an existing
database of legal nonwords. As a matter of fact, these nonwords led to even greater
biases, because there was not only information present in the word stimuli but in
the nonword stimuli as well (given that the nonwords tended to resemble the other
nonwords more than the words). Additionally, we showed that creating nonwords

by changing one or two letters in the word stimuli of the experiment leads to



another difficulty, because the similarity across response categories may become
larger than the similarity within categories. Nonword generating approaches such as
Wuggy (Keuleers et al., 2010) or the statistical approach used for FLP lead to less
biased stimuli. Of these approaches, Wuggy may be the more convenient. It is
currently available for eight languages (Dutch, French, English, Basque, Spanish,
Serbian, German, and Vietnamese). In combination with the LDINN algorithm to test
the final composition of a set of stimuli, we expect that it can be used to design

experiments with almost no inherent bias left.

We do not claim that the LD1INN algorithm is a cognitive model of the way in which
participants detect systematic differences between words and nonwords. We simply
argue that in many lexical decision experiments there is much more sublexical
information participants may exploit than acknowledged by the experimenters. In
addition, the algorithm may not be so far-fetched given that it bears close
resemblances to exemplar based models in psychology and to memory-based
language processing methods (Daelemans & van den Bosch, 2005), which have been
successfully applied in the domain of computational linguistics. The fact that, in all
the experiments we tested, a simple algorithm produced probabilities that were
predictive of lexical decision performance suggests that inherent bias may account
for more variation in response measures than we are currently aware of. In this
respect, it is important to notice that the relations between word probabilities and
RTs in existing megastudies were consistent with the LD1NN predictions, with biases

against word decisions leading to slower RTs on word trials and to faster decisions



on nonword trials, except in ELP, where the bias was opposite to the response to be

given.

Conclusion

We presented a novel method to detect inherent bias in lexical decision experiments.
The LD1INN algorithm can be used to detect bias, and to guide stimulus construction.
Analysis of mock datasets and existing lexical decision experiments indicated that (1)
inherent bias in a lexical decision experiment is very hard to avoid, (2) traces of bias
are reliably detected when behavioral data are analyzed, and that (3) some nonword
generation approaches lead to less biased stimulus sets. In particular, the nonword
generation algorithm used by the Wuggy program (Keuleers & Brysbaert, 2010)
seems to be the best option for constructing lexical decision experiments with little

inherent bias. Wuggy is available at http://crr.ugent.be/Wuggy. The LDINN

algorithm is available for R (R Development Core Team, 2010) in the vwr package

(Keuleers, 2011) from http://cran.r-project.org/web/packages/ or from

http://crr.ugent.be/LD1NN and includes the necessary tools to run simulations and

to plot figures such as the ones presented in this paper.
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Appendix: R code for the LDINN algorithm
LDINN <- function(stimulus, type, reference.level){

n<- length(stimulus)

bias< -rep(0,n)

for(i in 2:n){
distances< - levenshteinDist(stimulus]i],stimulus[1:i -1))
unique.distances< - sort(unique(distances))
mini mum.distance< - unique.distances[1 ]

indexes< - which(distances<=minimum.distance)
distribution< - type[lii - 1][indexes]
probability< - sum(distribution==reference.level)/length(distribution)
bias[i]l< - probability - (1 - probability )
}

return(bias)

#*



Table 1. LDINN, applied to a set of 10 randomly chosen stimuli. The first column
shows the current stimulus in the experiment, along with its lexicality (Word=W,
Nonword=N). The second column shows the previous stimuli in the experiment,
ordered by their Levenshtein distances from the current stimulus. The third column
shows the Word probability (p) for the current stimulus, or the ratio of number of
words at the nearest distance to the total number of stimuli at the nearest distance.
The final column shows the Word bias (2p-1) for the current stimulus, with 1 and -1

indicating complete bias for and against a Word response.
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Figure 1. Results of LDINN algorithm presented with a group of 2500 mono- and
disyllabic English words and 2500 random letter strings, matched for length. Left
panel: distribution of word bias for both words and nonwords. Right panel:
cumulative average of word bias for words and nonwords; the grey line indicates the
numerical bias for words based on the percentage of words vs. nonwords processed

up to that point.
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Figure 2. Results of LDINN algorithm presented with a group of 2500 mono- and
disyllabic English words and 2500 nonwords from the ARC nonword database,
matched for length. Left panel: distribution of word bias for both words and
nonwords. Right panel: cumulative average of word bias for words and nonwords;
the grey line indicates the numerical bias for words based on the percentage of

words vs. nonwords processed up to that point.
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Figure 3. Results of LDINN algorithm presented with a group of 2500 mono- and
disyllabic English words and 2500 words generated by Wuggy, matched for length.
Left panel: distribution of word bias for both words and nonwords. Right panel:
cumulative average of word bias for words and nonwords; the grey line indicates the
numerical bias for words based on the percentage of words vs. nonwords processed

up to that point.
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Figure 4. Results of LDINN algorithm presented with the stimuli presented to a

random participant in the English Lexicon project. Left panel: distribution of word

bias for both words and nonwords. Right panel: cumulative average of word bias for

words and nonwords; the grey line indicates the numerical bias for words based on

the percentage of words vs. nonwords processed up to that point.
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Figure 5. Results of LDINN algorithm presented with the stimuli presented to a
random participant in the French Lexicon project. Left panel: distribution of word
bias for both words and nonwords. Right panel: cumulative average of word bias for
words and nonwords; the grey line indicates the numerical bias for words based on

the percentage of words vs. nonwords processed up to that point.
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Figure 6. Results of LDINN algorithm presented with the stimuli presented to a

random participant in the British Lexicon project. Left panel: distribution of word

bias for both words and nonwords. Right panel: cumulative average of word bias for

words and nonwords; the grey line indicates the numerical bias for words based on

the percentage of words vs. nonwords processed up to that point.
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