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Abstract
The literature on auditory word recognition hasrbdeminated by experimental studies, where
researchers examine the effects of dichotomizedas (e.g., frequency) on response times
and accuracy, while controlling for extraneous afles. Although experiments help inform and
constrain the lexical processing system in impanteays, they are also associated with some
limitations. In the present study, we explore thityiof analyzing existing datasets via
regression analyses, in order to complement arehdxXindings from experimental work.
Specifically, using three independent auditorydakdecision datasets, we evaluated the relative
importance of onset characteristics, token duratird frequency, neighborhood density,
unigueness point, consistency, imageability, aredadgcquisition (AoA) on response times and
accuracy. Surprisingly, onset characteristics, tilamaand AoA accounted for more item-level
variance than predictors that are far more infliz¢im the literature. The discussion focuses on

the new theoretical and methodological insightyiled by these analyses.
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Auditory word recognition of monosyllabic words: #&ssing the weights of different factors in

lexical decision performance

Language processing is critical to human life. Efane, it is no coincidence that
language research plays a central role in cognsyehology. Major efforts have been made to
understand how people produce and perceive spalewidtiten messages. In this article we
present a review of the factors claimed to inflieetie efficiency with which spoken words are
recognized. In particular, we review the literatarethe auditory lexical decision task. In this
task, participants are presented with spoken stiamal they have to decide whether the stimuli
form a word or not. The lexical decision task i€ afi the most popular tasks to study word
processing, both in the auditory and the visual aitd The availability of data in both
modalities makes it possible not only to assesstipact of the different variables on spoken
lexical decision, but also to compare them with wWkeppens in visual lexical decision. First, we
review the various factors that have been mentido@afluence auditory lexical decision
performance. Then, we report new analyses thatalldv us to assess their relative weights.
Variables influencing auditory lexical decision figmance

In a systematic and thoughtful review of the augitexical decision task, Goldinger
(1996) highlighted several variables that were kmowaffect lexical decision performarice
The variable consistently reported to have an effesword frequencyhigh-frequency words
are recognized faster than low-frequency wordss Thunsurprising given the ubiquity of the
frequency effect, both in visual word recogniti@aéyen, Feldman, & Schreuder, 2006; Balota,
Cortese, Sergent-Marshall, Spieler, & Yap, 2004/sBaert & New, in press) and in auditory

word recognition (for lexical decision, see Clela@dskell, Quinlan, & Tammimen, 2006;
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Connine, Mullenix, Shernoff, & Yelen, 1990; Goh,&8ez, Yap, & Tan, in press; Luce & Pisoni,
1998; Marslen-Wilson, 1990; Meunier & Segui, 1998wiaczek & Pisoni, 1986; Taft &
Hambly, 1986; for phoneme categorization, see Gunniitone, & Wang, 1993; and for word
naming, see Luce & Pisoni, 1998). According toetiht models of spoken word recognition,
word frequency can modulate the recognition thries{eng., the logogen model; Morton, 1969)
or the resting activation of lexical representadi¢®.g., the cohort model; Marslen-Wilson,
1987). It can also influence the strength of cotinas between lexical and sublexical
representations (MacKay, 1982, 1987) and bias gas#l decision processes (neighborhood
activation model; Luce & Pisoni, 1998). Word fregag appears to affect performance even at
the earliest moments of recognizing a spoken wotdlénd et al., 2006). Specifically, when
Cleland et al. used a dual-task procedure (Past®84) to identify the locus of the frequency
effect in auditory word recognition, they concludidt frequency-sensitive processes in
auditory word recognition are not only automati¢ &kso operate early (but see Connine et al.,
1993, for a contrasting view).

The second variable Goldinger (1996) mentionedwegghborhood densitfe.g., Luce
& Pisoni, 1998, Vitevitch, 2002): Words which arem phonologically distinct are recognized
faster than words that are less distinct. Thigus @ the fact that auditory stimuli activate
partially compatible word representations in adudiitio the target words, so that there is
competition between the various representatiortsgibizactivated. This competition is most
often captured with neighborhood density, whiclergto the number of neighbors a target word
has. There are two metrics for density. DensityoArnts only neighbors that are defined as
words that can be obtained by substituting one ehmenof the word (e.g. the neighborshatch

includematch, hitch, andhaw). Density B in addition includes neighbors obtditey deleting
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one phoneme (e.casfor hag or by adding one phoneme (elmplvesfor hag. The latter
definition” seems to be more influential; Luce and Pisoni §)28ed it and it is becoming more
frequent in visual word recognition as well (De M@&oBrysbaert, 2000; Davis & Taft, 2005).
At the time of Goldinger’s review, there was onhecstudy showing an effect of neighborhood
density (Luce, 1986) and one that failed to obila{Marslen-Wilson, 1990). Since the review,
however, a series of studies have confirmed th@itapce of neighborhood density. Luce and
Pisoni (1998), for instance, reported that wordjfiency alone explained at most 6% of the
variance in auditory perceptual identification ®skhereas a frequency-weighted neighborhood
probability measure, taking into account both tleg@iency of the target and the frequencies of
the competitors, explained up to 22% of the vagaitese trends were also observed in the
auditory lexical decision task.

Third, Goldinger (1996) mentioned thaiqueness pointvhich refers to the position in a
word that distinguishes the word from all other dsrGiven that spoken words take time to
produce, they can often be recognized before theejudly pronounced, certainly when the first
part uniquely defines the word (asspaghetfi. As a consequence, it can be expected that words
with earlier unigueness points will be recognizastér than words with later uniqueness points,
everything else being equal. The uniqueness peia important variable within the cohort
theory (Marslen-Wilson, 1989; Marslen-Wilson & We|4.978), which is based on the
assumption that the auditory input initially actesall words compatible with the first segment
and subsequently prunes back the number of caegidatil only the target word remains.
Although the uniqueness point can be defined inviags (i.e., as the number of phonemes up to
the uniqueness point or the time duration up t® plint), it is most typically defined in terms of

the number of phonemes.
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Finally, Goldinger (1996) mentioned the importanéenatching stimuli orstimulus
length Given that some words take longer to pronounag tthers, it seems wise to make sure
that words in one condition are not systematidalhger than those in the other condition(s).
Again, there are two ways to define stimulus lengtther as the number of phonemes in the
word, or as the actual duration of the word. Thenfer is usually mentioned in articles. The
latter is often controlled implicitly when reseagch start the response timer from stimwtfset
(instead of onset) or when they match the stimeross the various conditions on token duration.

A variable that has gained prominence after Golelitsg(1996) review is theonsistency
of the mapping between the pronunciation and tledispg of the words, which reflects the
extent to which words with similar pronunciatiores/k similar spellings (Stone, Vanhoy, Van
Orden, 1997). Consistent words (eaad) have spellings that match that of similarly
pronounced words (e.dhad dad pad, while inconsistent words (e.gchemghave spellings
that are in conflict with similar pronounced woiKgsg.,drean). While consistency can be
computed for various orthographic segments, itrhast often been examined at the level of the
rime (i.e., medial vowel plus coda). There is sabsal evidence in the literature that consistent
words are recognized faster than inconsistent wiordsditory word recognition, suggesting that
orthographic information modulates the perceptibspgech, although most of this research has
been done in French (Pattamadilok, Morais, Vent&rgplinsky, 2007; Perre & Ziegler, 2008;
Ziegler & Ferrand, 1998; Ziegler, Ferrand, & Mortte2004; Ziegler & Muneaux, 2007; Ziegler
et al., 2008) or Portuguese (Ventura, Morais, &isity, 2007; Ventura, Morais, Pattamadilok,
& Kolinsky, 2004). Most English studies (e.g., Gen, Gaskell, & Dumay, 2007; Miller &
Swick, 2003; Slowiaczek, Soltano, Wieting, & Bish@003; Taft, Castles, Davis, Lazendic, &

Nguyen-Hoan, 2008) have examined primed rather ig@ated word recognition by
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manipulating the orthographic and phonological aebetween prime and target. To our
knowledge, the only study that reported consisteifacts in English auditory lexical decision,
without using priming, is Ziegler, Petrova, andriged (2008).

Another variable that has been added to the sefiesssible influences on auditory word
recognition is thege of acquisitiorfAoA, i.e., the age at which a word has been ledynFor
example, Turner, Valentine, and Ellis (1998) showed words acquired early in life are
recognized faster than words acquired later, indeet of their frequency of occurrence.
Intriguingly, these authors even claimed that thia¢n AoA was controlled for, frequency no
longer had a reliable effect on auditory lexicatid®mns, suggesting that previous studies
reporting robust frequency effects may have inaéwly reported an AoA effect in disguise
(see Smith, Turner, Brown, & Henry, 2006, for aitamfinding of a stronger AoA effect than a
frequency effect).

Other researchers have explored the role of meaeiated variables on the perception
of speech. For example, both Tyler, Voice, and M@8€0) and Wurm, Vakoch, and Seaman
(2004) demonstrated that highageabilitywords (i.e., words that are easy to visualize) are
recognized faster than low-imageability words. Watnal. (2004) also showed effects of other
meaning-related variables such as Osgood’s (1968raions of Evaluation (“is this good or
bad?”), Activity (“is it fast or slow?”), and Potey (“is it strong or weak?”).

The value of multiple regression analyses

When confronted with a considerable list of vargsdike the one just mentioned, it is a
good strategy to both consider the effect of easfable in isolation and to run multiple
regression analyses on (large) samples of unsdletitauli. This approach has been applied

successfully in visual word recognition and is kmaivere as the megastudy approach (see
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Baayen et al., 2006; Balota et al., 2004; Chatedar&d, 2003; Cortese & Khanna, 2007,
Lemhofer, Dijkstra, Schriefers, Baayen, GraingeiZ\&itserlood, 2008; Lewis & Vladeanu,
2006; Seidenberg & Waters, 1989; Spieler & Bald897; Treiman, Mullennix, Bijeljac-Babic,
& Richmond-Welty, 1995; Yap & Balota, 2009). Althgluthese regression studies are probably
not as powerful as carefully designed experimemts/aluate the significance of specific
variables or combination of variables (Sibley, Kel: Seidenberg, 2009), they provide
invaluable information about the relative importamé multiple correlated variables in terms of
the percentage of word recognition variance exphin

Another reason for running regression analysesngelacted stimulus samples rather
than trying to manipulate particular variables wamntioned by Lewis and Vladeanu (2006).
They pointed to the fact that in lexical processegparch, experimenters are rarely able to
manipulate their variables. All psycholinguists cinis select the stimuli for the different
conditions. As Lewis and Vladeanu (2006, p. 979uad: “... we cannot manipulate the factors
that we call independent variables. A word has Ifighuency, not because we have manipulated
its frequency, but because there is somethingctnaes it to be produced more often than other
words. When we identify word frequency effects stheffects are merely correlations between
two dependent measures.” The fact that word stilme to be selected (rather than
manipulated) strains the solidity of experimen&sults because researchers usually have
difficulty matching their stimuli on all control viables identified in the literature (Cutler, 1981)
and because there is always the danger of sulbtte®in the type of words that are chosen for
the different conditions (Forster, 2000).

Finally, the fact that experimenters categorizetionious variables in experiments is

another restriction, given that such categorizaisoassociated with a decrease in statistical
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power (Cohen, 1983; Humphreys, 1978; Maxwell & Dela 1993) or sometimes an increased
likelihood of incorrectly rejecting the null hypasis (MacCallum, Zhang, Preacher, and Rucker,
2002).

The following are some of the insights yielded bgression analyses on visual lexical

processing data:

1. Word frequency is the most important predictor istial lexical decision times,
accounting for up to 40% of the variance (of wh2&% cannot be accounted for by other
correlated variables; Baayen et al., 2006; Co&eBdanna, 2007). In contrast, for word
naming times, the articulatory features of theahphoneme are the most important,
explaining up to 35% of the variance (Balota et2004; Cortese & Khanna, 2007). In
this task, word frequency explains less than 10%hefvariance (of which 6% is pure),
implying that for word naming it is more critica tnatch conditions on the first
phoneme than on frequency (Kessler, Treiman, & &fullx, 2002; Rastle, Croot,
Harrington, & Coltheart, 2005; Rastle & Davis, 2002

2. There are large quality differences between vaneos frequency measures. In
particular, the widely used Kara and Francis (1967; KF67) frequency norms ade ba
The proportion of variance explained by KF67 fraguein visual lexical decision times
is more than 10% less than the variance explaiggtidobest available frequency
estimates (Balota et al., 2004; Brysbaert & Newpriess; Zevin & Seidenberg, 2002).

3. When objective frequency, familiarity ratings, agk-of-acquisition (AoA) ratings are
used as predictors, the total proportion of vamaexplained for monosyllabic printed

words remains the same regardless of the qualittyeobbjective frequency measure used
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(10% in word naming and 51% in lexical decisiondsmespectively; Brysbaert &
Cortese, submitted). This is due to a trade-ofiveen the objective frequency measure
and the familiarity measure (and to a lesser extenAoA rating). Specifically, thenore
variance accounted for by objective frequencyélssvariance accounted for by
familiarity. Rated familiarity and rated AoA accduor 20% of the visual lexical
decision times when KF is used, but for less tHanfihe best objective frequency
measure is used.

4. There is a quadratic effect of word length in videaical decision if word frequency and
neighborhood density are controlled for: RTs desedar very short word lengths (2-4
letter), stay stable for middle word lengths (%e@drs), and increase sharply after that
(9+ letters; New, Ferrand, Pallier, & BrysbaertDgy

5. Many theoretically important variables accountdbmost 3% of the variance in lexical
decision times to monosyllabic printed words, ofahhusually less than 1% is
unguestionably due to these variables (Baayen,e2G06).

6. The best predictor of word processing times of Bhglvords in a second language is the
processing times of English words in the nativgylage. The specific properties of the
mother tongue of bilinguals account for very littigriance, putting into perspective the
many experimental studies that focus on the intenag between the bilinguals’ first and

second languages (Lemhofer et al., 2008).

The examples selected above illustrate a few otdiméributions regression analyses
have made to our understanding/ualword processing. In the remainder of this artiale,

will examine how regression analyses can yieldtaatdhl insights intcauditory word processing
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(see Jusczyk and Luce, 2002, and Dahan & Magn2€ft, for excellent reviews of the
literature). Our emphasis will be on performancéhmauditory lexical decision task. While
other auditory lexical processing tasks are avhilatuch as word naming, where participants
repeat auditorily presented words, or perceptuaitification, where participants identify words
that are degraded by presenting them against agliaghkd of white noise, the lexical decision
task has been particularly influential in the Etiere for several reasons. It is easy to administer
produces more robust effects than naming, doesenoire the use of degraded stimuli, is less
susceptible to sophisticated guessing strategmesakbows response times to be measured (Luce
& Pisoni, 1998). Much of the research using theitaugllexical decision task has examined the
effects of cohorts (Taft & Hambly, 1986; Marsleni8din, 1990; Soares, Collet, & Duclaux,
1991) or competing neighbors (Goh et al., in pré€sddinger, Luce, & Pisoni, 1989; Luce &
Pisoni, 1998; Vitevitch & Luce, 1999; Ziegler, Mung&, & Grainger, 2003), the effects of
various types of priming (e.g., Holcomb & Anders@893; Kiyonaga, Grainger, Midgley, &
Holcomb, 2007; Whatmough, Arguin, & Bub, 1999), dhe involvement of orthographic
representations in spoken word recognition (Zie§l€&rerrand, 1998; Ziegler et al., 2003;
Ziegler et al., 2008).

In particular, we will be focusing on the relatiweights of the variables mentioned
above and on how they compare to what is foundsina¥ lexical decision. Multiple regression
analyses have been used before to study auditapalelecision performance (Smith et al.,
2006; Wurm et al., 2004), but they have focusethesignificanceof the variables, not on their

importancevis-a-vis each other.
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Method
Datasets

To conduct regression analyses, one needs reagdagd# samples of items. In visual
word recognition, studies based on large seteaisthave become known as megastudies,
where stimulus sample sizes range from a few huhidrever 40,000 words. Interestingly, with
the exception of Luce and Pisoni’s (1998) semihadys megastudies are virtually non-existent
in auditory word recognition research, very likbgcause presenting auditory stimuli entails a
great deal more effort than presenting visual siirfilowever, in the literature it is possible to
find studies involving a few hundred stimuli and puevious experiences with regression-type
analyses have convinced us that sensible conclkismmbe drawn from these samples, unless
the range of the stimuli is restricted in some wayaddition, most auditory lexical decision
studies thus far have involved monosyllabic wovdsich means that the maximum number of
stimuli is limited to some 8,000 (even less if omlpnomorphemic words are considered).

We were able to obtain item-level data from threelies. The first is the well-known
large-scale study of Luce and Pisoni (1998, Expenin2), in which they tested their
Neighborhood Activation model (Luce, 1986; Luce &dhi, 1998; Luce, Pisoni, & Goldinger,
1990). This study involved 918 consonant-vowel-coast (CVC) monosyllabic words that
differed on KF67 frequency, neighborhood densitg aeighborhood frequency. The second
study consisted of an unpublished pilot study refito in Cleland et al. (2006). It consisted of
200 low-frequency and 199 high-frequency monosidlamrds (frequencies based on the
CELEX database; Baayen, Piepenbrock, & van Rij83)9Finally, we had access to a small-
scale study run by Goh et al. (in press). Thisystudhich factorially manipulated neighborhood

density and word frequency, consisted of 184 maditedsg CVC words. Because the vast
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majority of stimuli (88%) consisted of three phoremmnthere was no point in entering phoneme
length in the regression analyses.
Predictor variables

Word frequencyfor a long time, the KF67 frequency measure, baseal small corpus

of one million words, was the only index availafde English. Even now, it is often used to
investigate the impact of word frequency, even ioather, better measures have become
available. The first real alternative was CELEXginency (Baayen et al., 1993), which is based
on 16.6 million written and 1.3 million spoken werdNext came Zeno frequency (Zeno, Ivens,
Millard, & Duvvuri, 1995), based on 17 million wardrom school books going from grade 1 to
grade 12. Another interesting addition was theigriNational Corpus frequency (BNC, Leech,
Rayson, & Wilson, 2001), containing 89.7 million nde from written sources and 10.6 million
words from spoken sources.

The advent of the Internet has spurred the devedopof frequency counts based on
millions of words downloaded from websites and déston groups. The first of these was the
Hyperspace Analog to Language frequency (HAL, Cpriiairgess, & Hage, 1999; Lund &
Burgess, 1996), based on a corpus of more tham@06n words. The second, USENET
frequency, has been regularly updated and the raosht iteration is based on 11 billion words
(Shaoul & Westbury, 2009). Probably the most imgikesInternet frequency counts to date are
the Google frequency norms, derived from approxéfyatne trillion word$ gathered from
publicly accessible webpages (Brants & Franz, 208ggcifically with respect to spoken words,
in addition to CELEX and BNC, there are two smallipora based on auditory language. The
first contains 1.6 million words coming from trangtions of lectures, meetings, advisement

sessions, and public addresses at a universityiZPasind Carbone, 2007). The second is the
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spoken American National Corpus frequency (Apfen Ide & Macleod, 2001: 3.86 million).
The small size of the spoken corpora is due tetists associated with speech transcription.
The latest addition to frequency measures comes Boysbaert and New (in press).
They presented a SUBVk frequency measure, which estimates word use obasis of film
and television subtitles (51 million words). In #&dth to raw frequency counts, this database
also provides a measure of contextual diversityBBlLtp. This is a measure that indicates in
how many films a particular word is used (rathamtlthe total number of observations of the
word). Adelman, Brown, and Quesada (2006) haveearfjuat contextual diversity measures
better explains word processing efficiency, a fngdieplicated by Brysbaert and New (in press)
for several megastudies involving visual word stimu
In the Results section, we will examine the cotretes between the various frequency
measures and the auditory lexical decision perfag@andices (reaction times and percentage of
errors) and select the best frequency measureeolpatsis of this analysis. In particular, we report
data on the following measures (we also testeadtiners, but they did not alter the conclusions

we draw):

1. KF67 (obtained fronmttp:/elexicon.wustl.eduierified on September 8, 2069)

2. CELEX (available ahttp://celex.mpi.nl/verified on September 8, 2009). There are

measures both from written and spoken sources.

3. Zeno (Zeno et al., 1995). This measure is notyraehilable, but is included here
because it has repeatedly been shown to be ohe bkEst for visual word
recognition.

4. HAL (available athttp://elexicon.wustl.eduterified on September 8, 2009)
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5. British National Corpus (available bttp://www.kilgarriff.co.uk/bnc-readme.html

verified on September 8, 2009). Only the spoken\p#irbe tested.

6. SUBTLwr and SUBTIgp (available ahttp://expsy.ugent.be/subtlexueerified on

September 8, 2009). The WF measure counts the muwhbecurrences in the corpus
of 51 million words; the CD measure counts the neindj films in which the word is

used (out of a total of 8,388).

Neighborhood densityVe downloaded the densities as defined by LucePaswhi

(1998) from the 20,000-word Hoosier Mental Lexidatabase (obtained from

http://128.252.27.56/Neighborhood/Home .agtrieved on August 10, 2009). As mentioned in

the Introduction, there are two metrics for dendiignsity A counts only neighbors that are
defined as words that can be obtained by substifuthe phoneme of the word, whereas density
B in addition includes neighbors obtained by dakptine phoneme. Because both metrics are
highly correlatedr(= .97) and because density B is generally se@moas appropriate, our
analyses were based on this measure.

Unigueness poinfAs discussed, uniqueness point is measured frerbehinning of a

word and refers to the point (i.e., position of pame) where a word diverges from all other
words in the lexicon. We used the estimates congpinteuce (1986), which were provided by
the Luce group (M. Geer, personal communicatiopt&aber 3, 2009).

Stimulus durationStimulus duration refers to the duration of theorded token in ms

for each word.
ConsistencyConsistency specifically refers to token (i.e., giwed by frequency)

feedback rime consistency. For example, the tokedldack rime consistency lwdilf is
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computed by dividing the summed log frequenciesiends (i.e., words that have rimes
pronounced as ff/ and spelled as —alf, e.galf) by the summed log frequencies of frierahsl
enemies (i.e., words that have rimes pronouncédfasut not spelled as —alf, e.graph).
Consistency values range from 0O (least consisterit)(most consistent), and our analyses are
based on the measure developed by Balota et &4)20

Imageability.Imageability refers to the ease of generatingh@ege when a given word is
presented (e.gcombis higher in imageability thacastg. We used the 7-point ratings collected
by Cortese and Fugett (2004), which can be dowelddcbm

http://myweb.unomaha.edu/~mcortese/norms%20link(kirified September 30, 2009).

A0A. Age of acquisition refers to the age at which adue learned. We used the 7-point
ratings collected by Cortese and Khanna (2008)sé&laee available on

http://myweb.unomaha.edu/~mcortese/norms%20link(kirified September 30, 2009).

Dependent variables

Rather than collecting new lexical decision data,oontacted the authors of the original
studies and asked them whether they still haduheldtaset (we thank the authors for their
generosity). For each study, we received item-levefrmation on token durations, mean lexical
decision latencies, and mean lexical decision amgurUnless indicated otherwise, RTs were
calculated from stimulus onset.

Results

The predictive power of the different frequencynestes

Frequencies were log transformed, and we only useds that were present in both the

Hoosier Mental Lexicon database and across thewsafrequency databases. Table 1 presents



Auditory word recognition 17

the percentages of variance explained by the vafil@guency measures in the performance
measures of the three studies we included.

There are several noteworthy aspects in Tablerat, Rnirroring the findings from visual
word recognition, the subtitle frequency measue=tdan the number of films in which a word
occurs (SUBTLp) generally outperforms the other frequency measi8econd, among all the
written frequency measures, KF67 frequency is thestv Surprisingly, HAL frequency is not
doing well either, suggesting that Internet-baseduency estimates may not be a good indicator
of spoken word use. To provide convergent valiggtwe tested the Google frequency measure
and obtained similar results. Finally, the spokegiiency measures of CELEX and BNC fare
quite badly as well, arguably because they arecbasesmall corpora of non-spontaneous speech
(correlations based on Pastizzo and Carbone (20X Csyokenfrequencies were equally
disappointing). The rank order of the frequency sneas was largely the same for the perceptual
identification tasks (Experiment 1) and the nantagk (Experiment 3) used in Luce and Pisoni
(1998; see below). Given that the SUEBBLmMeasure is unequivocally the best measure, both fo
auditory and visual word processing (Brysbaert &iNm press), we will limit our frequency-
related analyses to this index in the remaindehefarticle.

Another interesting aspect of Table 1 is the reddyi low proportions of variance
explained by frequency. They hover around 10%, Wwisanuch lower than the estimates
previously reported for visual lexical decisionfpemance. To ensure that the lower percentages
were not due to the small number of stimuli, wereixed the proportions of variance that were
explained by frequency if we replaced the auditerycal decision data from the experiments by

the visual lexical decision data from the Balotale{2004) monosyllabic megastudy
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(http://www.psych.wustl.edu/coglab/labpub.htretrieved on September 30,2009). These data

are shown in Table 2.

As can be seen by comparing Table 1 with Table@frequency effect in auditory
lexical decision RTs is about one third as strasthat in visual lexical decision RTs. To further
investigate the issue, we also calculated the ptages of variance accounted for in auditory
word naming (Luce and Pisoni, 1998, Experimentrg) @sual word naming (Balota et al.,

2004 http://www.psych.wustl.edu/coglab/labpub.htihese data are shown in Table 3. From

this table, it is looks like there is not much dittnce between the frequency effect in visual
word naming and auditory word naming (taking intc@unt that the accuracy data were close to
ceiling level). The frequency effect in naming ise¢h smaller than in lexical decision, also for
the auditory modality. Interestingly, the frequerfect is not completely absent in auditory
word naming when a good frequency measure is @bdrrthan KF67 (the estimate of Luce &
Pisoni, 1998). This is yet another reminder thatligyidifferences between the various
frequency measures do have implications for the tfitheoretical conclusions researchers draw
from their data (see also Zevin & Seidenberg, 20@0&dh the benefit of hindsight, it is plausible
that Luce and Pisoni might have come to (slightifferent conclusions if they had access to a
better frequency measure at the time.

Luce and Pisoni (1998) also provided subjectiveilfarity ratings for their words (taken
from Nusbaum, Pisoni, & Davis, 1984). When we ezddhese together with SUBEL
frequency in a regression analysis on the lexiealsion times, SUBT¢p frequency explained
most of the variance and familiarity accountedaoradditional 3.4% of unique variance
(bringingR? up to 13.5%). When the familiarity ratings wergezed with KF67 frequency, they

explained relatively more variance (8.8%) and Kkéguency added another 3.0% (bringifg
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to 11.8%). This replicates Brysbaert and Corterlbmitted) observation that familiarity

ratings are particularly needed when one has agfamor frequency measure, which should be a
further incentive for researchers to drop the Kik&guency.

The relative weights of the different variables

Now that we know which frequency measure to useB[HLtp), we can examine the
importance of the different variables (see Tabler4he correlations between the various
predictors). In addition, we can directly compaffeas in auditory lexical decision and in visual
lexical decision.

To estimate the impact of each predictor, we dated two indices: The percentage of
variance accounted for when the variable wastitgvariable in the regression analysis and the
increase irk?2 when the variable waslded tathe other variables (see Table 5). In most
instances, the impact of a variable decreases whrealated variables have been entered before
(which gives an idea of the unique variance acealifar by the variable). However, in some of
our analyses, due to non-additive effects, thesim®e irR2 when the variable was introduced
after the others actually was slightly higher thiae zero-ordeR2. For comparison purposes,
Table 5 also includes the results of the same aaslgn the Balota et al. (2004) visual lexical
decision data.

Three surprising observations came out of Tabkrst, AOA was a more important
variable than word frequency. Given the importaaitached to the frequency effect (see above),
this is noteworthy finding, as it suggests thairgé part of the frequency effect is due to
differences in AoA (see Smith et al., 2006, andn&uret al., 2004, for similar findings). A
comparison with the visual lexical decision datafoes that the AoA effect is more important

in the auditory modality than in the visual modaliin visual lexical decision (RTs), even after
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controlling for AoA and all other correlated vares, word frequency still accounted for 11% of
the variance if the analysis was based on all wordse three studies, 12% more variance if the
analysis was limited to the Luce and Pisoni wogdsé,for the Cleland et al. words, and 16% for
the Goh et al. words (see also Butler & Hains, 1@r@ Morrison & Ellis, 1995 for other data
on visual lexical decision).

A second surprising finding is the size of the siims duration effect on response times.
Across studies, this is by far the most importaetictor of response times, consistent with
Goldinger’s (1996) warning that stimuli must be trohed for token duration.

The third surprising finding was the small sizeétw neighborhood density effect (except
for the Goh et al. study), given the importancadted to this variable in the literature. One
reason for this might be that neighborhood dens#tyseis not an optimal estimator of
competitive processes during word recognition.ds@mple, Luce and Pisoni (1998) showed
that a frequency-weighted neighborhood probabitigasure did much better than the simple
neighborhood density measure for predicting petadptientification performance.

The effects of uniqueness point and sound-speliimg consistency were small as well
and did not generalize across datasgtgen that most uniqueness points in the stimudts s
used coincided with the word end, it must be kephind that the range of this variable was very
limited and, hence, the impact of the variablekisly to be underestimated in the analyses we
have conducted. The absence of a consistency éffetical decision is also not entirely
surprising, given that this effect tends to bedarg tasks such as speeded naming, where there
is an emphasis on the production of phonology (Bad al., 2004; Jared, McRae, and
Seidenberg, 1990). To ensure that these pattenesivae due to small sample size or restriction

of range, we examined the proportions of variaheg Wwere explained by consistency if we
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replaced the auditory lexical decision data fromekperiments by the visuahmingdata from
Balota et al.’s (2004) monosyllabic megastudy. therLuce and Pisoni words, consistency
explained 0.8% of the variance in accuracy and 28%e variance in RTs; for the Cleland et
al. words, the percentages were respectively 1ddde&%; and for the Goh et al. words, they
were 1.0% and 3.8%. Collectively, these resultperighe idea that consistency plays a very
modest role in auditory lexical decision performarat least in English. Finally, the effect of
word imageability on auditory lexical decision sry modest as well.
Replacing time from stimulus onset by time fromsitis offset

To circumvent the problem of differences in stinsutlurations, Luce and Pisoni (1998)
started the time measurement atdffsetof the stimulus token rather than at the onset. To
evaluate to what extent this is a solution forghmulus duration effect observed in Table 5, we
ran a further set of regression analyses on theritiigs the stimulus duration (see Table 6).

As can be seen in Table 6, although subtractiagtimulus duration from the response
time ameliorated the confounding to a large exitetite Luce and Pisoni study, it actually
reversedhe problem in the other two studies (and alssotoe extent in Luce and Pisoni): RTs
were now faster to words that took a long timermpunce, compared to words that were
pronounced faster. So, using total word duratioarasstimate of the uniqueness point is not
always a good strategy (as cautioned by Goldirlf¥96), because words may be recognized
before the end of the final phoneme, either bectheseuniqueness point is earlier, or because
the final phoneme is long.

Given the strong effect of stimulus duration onitarg lexical times, both when times

measurement starts at word onset and when timeumsasnt starts at word offset (in the
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reverse direction), we decided to examine in gredgtail the effect of word onsets on auditory
lexical decision performance. This will be addressethe next section.
Do onset characteristics account for variance aband beyond lexical and semantic variables?

To further investigate the influence of stimulusation on auditory lexical decision
times, we decided to examine whether the tokentgmeduced an effee@bove and beyonithe
token duration. There are two ways to study thesibtes effects of onset characteristics on
auditory lexical decision times. The first is tpeat what has been done in word naming tasks.
Here, researchers (e.g., Balota et al., 2004; @bha8elared, 2003; Treiman et al., 1995) have
defined the first phoneme using a combination ohdiomous variables that encode the
articulatory features of the sound (e.qg., affriatialveolar, bilabial, dental, ...) and examined
how much variance these variables explain.

Another approach is to look in detail at the acgmdech signal. Such a study has been
reported by Rastle et al. (2005), who carried dinnegrained examination of onset effects in
articulation. Using a delayed naming paradigm, texeymined the temporal characteristics of the
motor execution stage of speech production andrdented two negatively correlated effects.
First, speech onsets differ on thexecution-acoustic interv@EAI), the interval between the
signal to initiate the motor execution and the ¢o$@coustic energy. Second, they also differ in
their acoustionset duration{OD), the interval between the acoustic onsetfliable and the
acoustic onset of its vowel. For instance, Radthd.eshowed that it takes participants on average
228 ms to initiate the /s/ sound and 161 ms toquanoe it. In contrast, participants require 303
ms to initiate the /b/ sound, and only 16 ms taprtmce it. For auditory word recognition
experiments, the onset duration variable is ofipaldr importance, because the timer starts to

run when the pronunciation of the word starts. WRastle et al.’s analysis shows is that it takes
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(approximately) 145 ms longer before a listenersif@e second phonemesatthan inbat
This may have an impact on the time participargsire to indicate that the stimulus is a word.

To examine whether word onset characteristics havweffect on auditory LDTs beyond
word duration, we ran two additional analyseshimfirst one, we used the 13 dummy variables
proposed by Balota et al. (2004). In the secondlyaisawe used the onset times calculated by
Rastle et al. (2005). Rastle et al. only analyzetsonant onsets, but this was no limitation given
that only a very small minority of the stimuli ing studies under investigation started with a
vowel. In the first and second steps, we enteredekical and semantic variables of Table 4.
One potentially controversial decision we made ke to include AoA in the second step
(semantic variables). If it had been entered irfitisé step, its influence of course would have
been much larger, at the expense of the frequeifegteln Step 3, we either entered the dummy
variables or the onset durations. Table 7 showsethalts.

The results from these regression analyses arellgroampatible with the earlier
analyses. There were significant effects of fregqyeand AoA, neighborhood density was
significant in two of three datasets (Cleland etad Goh et al.), and there were no clear effects
of uniqueness point, consistency, or imageabilityss all datasets.

The interesting new finding is that onset charasties explained a significant proportion
of variance in RTs, above and beyond token duratiahall the variables mentioned above. It
varies from 3% in Luce and Pisoni (1998), 4% in @bAl. (in press), to almost 18% in Cleland
et al. (2006). Indeed, onset characteristics apjpesarcount for more variance than most of the

popular variables in auditory word recognition easé.
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Discussion

In this paper, we examined the impact of varioesdlis thought to be important in
auditory lexical decision performance. This wasalbg conducting multiple regression analyses
on well-established datasets from different redegroups, so that any observed results were
unlikely to be due to the idiosyncrasies of a pattr group. Some quite unexpected findings
emerged from these analyses.

The first surprising finding was that word frequgmeasnot the best predictor of
auditory lexical decision performance. Auditoryilsat decision frequency effects were about
three times smaller than visual lexical decisi@gtrency effects (compare Tables 1 and 2),
although they were still larger than visual wordnirag frequency effects (compare Tables 1 and
3). More intriguingly, it seems likely that the kudf the frequency effect is actually an AoA
effect in disguise. AoOA was the most robust fagtaall our analysis and survived the partialling
out of all lexical variables (see Table 7), whereaquency accounted for very little variance
once AoA was partialled out (see Tables 5 and 6A Aas not been taken very seriously in the
auditory word recognition literature, even thougre have been studies pointing to its primacy
over word frequency (Smith et al., 2006; Turnealet2004). Our analyses clearly show that the
unique effect of AoA is considerably stronger irdiéory lexical decision than in visual lexical
decision (see Table 5).

Why is the AoA effect more influential in the aumly modality? Turner and colleagues
suggested that there are separate lexicons assberah visual and spoken word recognition
respectively, and that each lexicon is differehtiaffected by AoA. Specifically, early in life,
language learning is mediated exclusively by thgitaty modality, and it is thus likely that early

acquired words have more impact on the organizatighe phonological lexicon than on the
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organization of the orthographic lexicon. Some emik for this hypothesis comes from brain
imaging studies. Fiebach, Friederici, Muller, vora@on, and Hernandez (2003) reported an
increased activation in tleuditory cortex when participants were readingually presented
early acquired words than when they were readitegdaquired words.

A second surprising finding was the large effecstohulus duration on lexical decision
times. Although researchers have been warned egigdhat they should control their stimuli
for stimulus duration (e.g., Goldinger, 1996; Wwetral., 2004), the magnitude of duration
effects is nevertheless very sobering, in partichécause there were virtually no differences in
the number of phonemes between the stimuli wedd8&2% consisted of 3 phonemes, 12% of 4
phonemes). This implies that the number of phonamest a good variable for estimating the
stimulus duration of short, monosyllabic words. @oald make the same case for the definition
of the uniqueness point. There is little gain intcolling short stimuli for theaumberof
phonemes up to the uniqueness point, given thaigrhes can differ a lot in duration. Instead, it
may make more sense to control for dueation up to the uniqueness point.

The analysis with the Rastle et al. (2005) measudisates that the onset duration is an
important predictor of auditory lexical decisiom#és (remaining significant even when total
stimulus duration is partialled out). As hypothesizthe execution-acoustic interval (EAI),
which plays an important role in word naming stsdie not relevant in auditory LDTs, because
timing only begins after the end of this interddbwever, the time needed to pronounce the first
consonant(s) substantially contributes to the fp@eticipants require before they can identify an
auditorily presented word. To further clarify tlesue, we examined the mean lexical decision

residual times for the different phonemes, afterticling for word frequency, neighborhood
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density, uniqueness point, token duration, constgteimageability, AoA, and number of
phonemes (where applicable).

Table 8 presents these mean residual times agsadunmf dataset and phoneme. There
are interesting trends that seem to hold acrosddtesets. For example, words beginning with
stops and affricates (generally) produce the shotitmes, while words beginning with fricatives
produce the longest times. Words beginning withalsaill in between. Obviously, there are
exceptions to this general rule, and the rank andsracross the three datasets are also not
identical. These variations are likely driven bifeliences in the regional accent of the speaker
and other indexical properties. Just as voice kalys longer to detect onsets with low acoustic
energy (e.g., /s/; Rastle & Davis, 2002), the humaditory perceptual system may also struggle
more with some phonemes, hence delaying recogriitiees. Importantly, these results, coupled
with the regression analyses, provide convergeideace that some onsets provide information
faster than others, and this then creates RT \aitlrat is independent of the major
psycholinguistic variables controlled thus far. Moessearchers already know that onsets should
be matched in experimental paradigms which meabkeréme taken tproducea vocal
response to a word. However, the present findindEate that onset characteristics also
influence the time taken t@cognizea word, suggesting that onset matching needs tatred
out even in the auditory lexical decision task. Mor general, it looks like authors should
present more information about the duration ofvidlweous segments of their stimulus words than
they currently do.

Our analyses further revealed that auditory lexdealision performance is relatively little
affected by neighborhood density, consistency,iaradjeability (unique percentages of variance

accounted for less than 3%). We hasten to pointhmytever, that we do not consider this as
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evidenceagainsta significant contribution of these variables.&bley et al. (2009) indicated,
multiple regression analyses may not be the mosegal technique to examine the significance
of a variable, especially if an unselected stimslasiple limits the range of the variable. Indeed,
other authors have reported reliable effects ae¢hariables (Luce & Pisoni, 1998, Experiment
1; Wurm et al., 2004; Ziegler et al., 2008). What analyses do show, however, is that the
unique variance accounted for by these variabgod that collectively accounted for by
stimulus duration (or duration to the uniquenessatpoonset characteristics, AoA, and
frequency, is likely to be low. This agrees withdings from the visual modality, where Baayen
et al. (2006) reported that the lower bounds ferghrcentage of variance explained by
significant predictors was lower than 1% for a# tion-frequency related variables (e.qg.,
inflectional entropy, derivational entropy, wordegory, mean bigram frequency, and
consistency). These low percentages mean thatrauthould worry less about perfectly
matching on these variables when they design amcaydexical decision study. It is much more
important to look at the big four, of which two ©A and onset characteristics - have not figured
prominently thus far.

Last but not least, our study is a wake-up call tagearchers should be more
discriminating in the use of their frequency measiioo many studies still rely on frequency
measures (e.g., KF67, spoken CELEX) that are glé@afiérior to the best measures available.
This makes it more difficult to find reliable freguocy effects, and leads to deficient stimulus
matching, which increases the likelihood of spusietfects of variables related to frequency.
These are weaknesses that can easily be remedredKkigg use of more contemporary

frequency measures that are based on sufficieartiyelcorpora.
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Footnotes
Goldinger’s list also included priming effects, whiare beyond the scope of this paper.
Subsequent analyses confirm that none of the claiade in this paper depend on the
specific density measure used. The same findirgslatained with density A. The
reason why one density measure was dropped waadegeoathe very high correlation
between both measuras>.90), which created a collinearity problem ie tegression
analyses.
We thank the authors who kindly provided us withsth data.
Although this corpus is presented as having tlzis, sh reality the useful information is
limited to some 500 billion words, still much mdhan any other corpus.
KF67 frequencies can easily be obtained from bffit sources: Elexicon

(http://elexicon.wustl.ed)y/the MRC Psycholinguistic Database

(http://www.psy.uwa.edu.au/mrcdatabase/uwa_mrg,hamd N-Watch (Davis, 2005;

http://www.pc.rhul.ac.uk/staff/c.davis/Utilitids/An intriguing (and worrying)

observation is that the three sources do not alwagespond in their counts. For
instance, for the wordged,Elexicon and MRC give a KF67 frequency of 18, wisrhl-
Watch gives a frequency of 27. In contrast, thedramtsis not present in MRC
(suggesting a frequency of 0), whereas ElexiconNuWilatch list a frequency of 7. A
likely explanation for these differences is thas@tne point in time some lemmatization

took place, which got integrated in some “KF67&siland not in others.



Auditory word recognition 40

Table 1.Proportion of variance explained in auditory lekidecision performance by the
different frequency measures. KF =d€ua & Francis (1967) frequency norms; Celex = the
Center for Lexical Information word-form frequenegrms (Baayen et al., 1993); Zeno = the
Zeno et al. (1995) frequency norms; HAL = the Hgpace Analogue to Language (HAL)
frequency norms (Lund & Burgess, 1996); SB¥ SUBTL wordform frequency norms
(Brysbaert & New, in press); SBf = SUBTL contextual diversity frequency norms (Brgert

& New, in press); Cegl = the Center for Lexical Information spoken freaeyenorms (Baayen et
al., 1993); BNG, = the British National Corpus (BNC) spoken fregeyenorms (Leech et al.,
2001).

KF  Celex Zeno HAL  SBTwe SBTep Cel, BNC,,

Luce & Pisoni Acc (n=726) 6.4 9.4 12.3 6.5 8.7 11.0 5.6 5.9
Luce & Pisoni RT (n=726) 5.6 6.9 8.8 7.0 9.4 10.4 5.8 7.5
Cleland et al. Acc (n=353) 11.0 14.6 14.8 14.5 15.4 16.1 10.2 12.5
Cleland et al. RT (n=353) 6.0 7.5 7.6 7.6 9.4 9.0 6.5 8.2
Goh et al. Acc (n=184) 6.1 7.0 12.4 6.3 9.7 11.8 4.5 9.1
Goh et al. RT (n=184) 5.9 8.6 10.5 6.8 13.3 13.9 5.8 8.9

Mean 6.8 9.0 11.0 8.1 11.0 12.0 6.4 8.7
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Table 2.Proportion of variance explained in visual lexidatision task (VLDT) performance by
the different frequency measures, based on Batah €004) words overlapping with words in
the auditory datasets. KF = Kera & Francis (1967) frequency norms; Celex = teat€r for
Lexical Information word-form frequency norms (Baayet al., 1993); Zeno = the Zeno et al.
(1995) frequency norms; HAL = the Hyperspace Anaéotp Language (HAL) frequency norms
(Lund & Burgess, 1996); SBJ= SUBTL wordform frequency norms (Brysbaert & New,
press); SBEp = SUBTL contextual diversity frequency norms (Bygert & New, in press);
Celkp = the Center for Lexical Information spoken freacygnorms (Baayen et al., 1993); BNC
= the British National Corpus (BNC) spoken frequenorms (Leech et al., 2001).

KF  Celex Zeno HAL SBTw: SBTep Cel, BNC,

Luce & Pisoni Acc (n=673) 9.2 13.2 12.7 9.5 10.9 15.1 7.7 8.8
Luce & Pisoni RT (n=673) 23.8 29.4 31.1 24.8 31.7 38.6 20.4 25.1
Cleland et al. Acc (n=287) 31.1 35.0 34.7 30.3 32.5 35.8 27.4 32.9
Cleland et al. RT (n=287) 46.2 50.3 50.6 48.3 51.7 54.6 40.6 49.1
Goh et al. Acc (n=177) 9.4 8.2 11.4 4.4 8.3 9.1 5.0 8.4
Goh et al. RT (n=177) 26.2 27.4 27.4 24.4 36.0 38.6 21.3 33.8

Mean 24.3 27.2 28.0 23.6 28.5 31.9 20.4 26.4
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Table 3.Proportion of variance explained in auditory amligl naming performance by the
different frequency measures. The visual namindyarsa are based on Balota et al. (2004)
words overlapping with words in the auditory data& = Kutera & Francis (1967) frequency
norms; Celex = the Center for Lexical Informatioard-form frequency norms (Baayen et al.,
1993); Zeno = the Zeno et al. (1995) frequency woiHAL = the Hyperspace Analogue to
Language (HAL) frequency norms (Lund & Burgess,@9%BTy= SUBTL wordform
frequency norms (Brysbaert & New, in press); SB¥ SUBTL contextual diversity frequency
norms (Brysbaert & New, in press); ggt the Center for Lexical Information spoken freqoye
norms (Baayen et al., 1993); BNG the British National Corpus (BNC) spoken fregeyen
norms (Leech et al., 2001); ANT = auditory namiagkt VNT = visual naming task.

KF Celex Zeno HAL SBTwe SBTcp Celgp BNC,,
Luce & Pisoni ANT Acc (n=860) 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0
Luce & Pisoni ANT RT (n=860) 0.6 1.5 2.0 1.8 3.2 3.3 1.2 2.0
Balota et al. VNT Acc (n=803) 0.2 0.9 1.2 1.4 1.2 1.2 0.5 0.9

Balota et al. VNT RT (n=803) 11 2.0 2.9 3.0 3.4 3.7 2.0 3.0
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Table 4.The correlations between word frequency, neightbadrdensity, uniqueness point,
feedback rime consistency, imageability, and agacqtiisition. The matrix below the diagonal
is based on the subset of words=(954) for which we have values for all six vatesh The
matrix above the diagonal is based on the fullsktt@ = 1090) and each correlation is
computed using the maximum number of observatioagable.

1 2 3 4 5 6
1. Log SUBTLp Frequency - .096** L118%** .018 .049 - 748%**
2. Neighborhood Density B .066* - .022 -.086** .080%** -.119%**
3. Uniqueness Point .149%** .014 - .015 .019 -.048
4. Feedback Rime Consistency .030 -.088%* .010 - .087** -.096**
5. Imageability -.100%** .063t .014 .088%** - -.394%**
6. Age of Acquisition -.699*** -.084%* -.063t .095%* -.301%** -

¥+ < 001, *p<.0l,*p<.05 fp<.10
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Table 5.The proportion of variance explained in auditong aisual lexical decision performance by differexical variables, when
response times are measured from stimulus onsetvishal lexical decision analyses are based oat8al al. (2004) words yoked
to the words in the respective auditory dataseg. first number gives the percentage of variancéagxgd when the variable is
entered alone; the last number gives the percetfaggiance the variable adds when it is introduiceaddition to the other six
variables. Freq = Word frequency; DensB = DensityBiq = Uniqueness point; Sdur = Stimulus durgtidon = Feedback rime
consistency; Image = Imageability; AoA = Age of arsition; VLDT = Visual lexical decision task.

Freq DensB Uniq Sdur Con Image AoA
Luce & Pisoni Acc (n = 665) B¥** - <1* <1t-0 0-0 <1*-0 0-0 Jrkx _rk 1%k - Q¥k*
Luce & Pisoni RT (n = 665) 10*** - 1 x** 3*¥**_0 <1**-0 20%** - 13***  0-0 JEHE ¥ 15%*k L xk*
VLDT Acc (n = 665) 15%%* _ gx** 0-0 0-0 NA 0-0 Rk Ak 18%** - ¥k
VLDT RT (n = 665) 39%**_12%**  0-0 <1t-0 NA 0-<1** Jrokk ok 3pHHH - HAx
Cleland et al. Acc (n = 287) 10¥** - 3** 0-17 <1-1t 2% - 3** 0-0 <1-0 8*¥** .0
Cleland et al. RT (n = 287) 7*¥** -0 0-2%* 2% - 1% 23%Hk _pPHak 0-0 <1-0 L%k - %%
VLDT Acc (n = 287) 3Gk _ Gk 0-0 <1-0 NA 0-0 JE*E - <1* 35kk* _1*
VLDT RT (n = 287) 5E*** - gk** 2*¥*%-0 0-0 NA 0-0 QF** _<1* S1xk* _ 1**
Goh et al. Acc (n =176) 11*¥** -0 0-0 0-0 <1-0 0-<1 4*%*-0 29%** _ 14¥**
Goh et al. RT (n =176) 13*** - <1 Gx* %% 0-0 25%** _ 3HkH 10*** - <1 4*%* -0 22%¥* _ DAk
VLDT Acc (n =176) Q¥k* 2% 0-0 0-0 NA 0-0 rHx . 3* 15%** -1
VLDT RT (n =176) 38***_16*** (0-1* <1-0 NA 4*%* -0 4E* % 27*** -0

*** p<.001, *p<.01; *p<.05; Tp < .10, in a hierarchical multiple regression irviod) all seven variables
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Table 6.The proportion of variance explained in audit@yital decision performance by different lexicatiahles, when response
times are measured from stimulus offset. The fitshber gives the percentage of variance explairfezhwhe variable is entered
alone; the last number gives the percentage o&negithe variable adds when it is introduced intexhdto the other six variables.

Freq = Word frequency; DensB = Density B; Unig Sdreness point; Sdur = Stimulus duration; Con =dbBaek rime consistency;
Image = Imageability; AoA = Age of acquisition.

Freq DensB Uniq Sdur Con Image AoA
Luce & Pisoni RT (n = 665) HAk _QHk* 0-0 0-0 ERRLIN LA 0-0 T** - <1** 10 H* - Q¥k*
Cleland et al. RT (n = 287) 10*** -0 1*-1** 0-<1* 43%** _39%xxA g _( 0-0 Qixk Ak
Goh et al. RT (n =176) 8¥*F* . <1 1-3%* 1-0 17*%% - 22%**A < <1-0 15%F* - pHk*

** n<.001, *p<.01; *p<.05; tp < .10, in a hierarchical multiple regression ining all seven variables
A Effect is in the opposite direction: faster resgmfor longer duration words
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Table 7.Standardized RT and accuracy regression coeftgifen Steps 1 and 2 of the item-level
regression analyses for lexical decision performafibep-value for eacl®’ change is
represented with asterisks.

Luce & Pisoni Cleland et al. Goh et al.
Predictor Variables LDT RT LDT Accuracy  LDTRT LDT Accuracy LDTRT LDT Accuracy
(n =665) (n =665) (n =276) (n =276) (n =175) (n =175)
Step 1: Standard Lexical Variables
Word frequency -.264%** 244 %% -.349%** .338%** -.329%** .360***
Neighborhood density B .011 .027 173%* -131% .203** -.081
Uniqueness Point -.035 .010 .090 -.079 .019 -.036
Stimulus Duration A15%** -.068t 505*** - 172%* A15%** -.067
Consistency .003 -.051 -.031 .011 -.094 -.063
Number of phonemes NA NA .072 -.032 NA NA
Adj. R? 262%** .067*** .345%** 113%%* .383%** .103***
Step 2: Semantic Variables
Imageability -.105** .133%* .042 .028 .010 -.058
Age of acquisition 189 ** -.198%** .296*%* -.033 .353*** -.587***
Adj. R ? .306*** L123*** 367%** 113k LA51F** 282 **
AR?=.044*** AR?=.056%** AR?=.022** AR’=.000  OR’=.068*** ARZ=.054%**
Step 3a: Onset Features
Affricative -.008 -.059 -.355%** -.019 -.085 -.145
Alveolar -.031 -.327 .000 .044 .071 -.017
Bilabial -.165 -.297t -.159** .050 .045 -.195*
Dental -111 -.120 -.123** -.036 .070 -.008
Fricative -.040 -.299 NA NA NA NA
Glottal -.107 -.294 -.066 -.036 .004 .078
Labiodental .056 -.321 -.103t .004 -.003 .001
Liquid -.144 -.195 -.262%** -.007 -.098 .092
Nasal NA NA NA NA NA NA
Palatal 341%** -.093 372%** -.045 .283* -.180
Stop .112%* .003 .003 .031 .043 -.011
Velar .014 .037 203%** -.135 .035 -.089
Voiced .059 .069 .280*** .007 .067 .072
Adj. R 2 333 %** .147*** .543%** 113k LA93F** 362%**
AR?=.027*** AR?=.024** AR?=.176*** AR?=.000 OR>=.042*  AR’=.054**
Step 3b: Onset Temporal Properties
Execution-acoustic interval .055 .021 -.007 .110 -.005 .261*
Onset duration .196%* -.022 .398%** .067 1997 .195
Adj. R’ 322%** L123*** 511kk* 113k A81*F** 291 %**
AR?=.016*** AR’ =.000 DR?=.144*** AR?=.000  AR?=.030** AR’=.009

***p<.001; **p<.01; *p<.05;Tp<.10
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Table 8.Mean residual lexical decision RTs as a functibdataset and onset.

Luce & Pisoni Cleland et al. Goh et al.
Phoneme Residual RT(ms) Phoneme Residual RT(ms) Phoneme Residual RT (ms)

p -36.74 g -113.29 d -40.02
n -36.67 b -83.71 b -23.68
r -29.45 Y -35.27 g -23.14
| -23.90 k -28.61 t -20.75
b -19.26 d -22.98 k -16.79
j -15.50 h -21.11 m -13.31
0 -14.38 r -6.91 n -11.75
d -10.58 | -6.44 w -11.59
f -5.18 t -6.17 | -11.20
2] -2.70 tS 10.18 d3 -6.38
\% 1.01 w 17.71 r -3.18
g 1.95 n 22.60 h 12.09
m 7.42 p 23.42 f 23.82
t 9.14 m 24.14 p 26.46
w 17.07 f 35.59 s 53.07
h 18.12 J 37.59 \ 93.85
k 19.30 s 99.02
d3 26.13

J 31.66

S 55.22

Mean residual RTs are reported only for onsets with at least 5 observations in a dataset.



